

Parallel Stateful Logic in RRAM: Theoretical Analysis and Arithmetic Design

0

Feng Wang, Guojie Luo, Guangyu Sun, Jiaxi Zhang, Peng Huang, Jinfeng Kang

gluo@pku.edu.cn

2019/07/16

Background

- Theoretical Analysis
- Integer Addition
- Extension
- Experimental Evaluation
- Conclusion

[1] Akinaga, H., & Shima, H. (2010). Resistive random access memory (ReRAM) based on metal oxides. Proceedings of the IEEE.

RRAM State Switching as Primitive Logic Operations

- MAGIC NOR implementation Z = NOR(X, Y)
 - $-V_G > 2 \cdot V_{RESET}$
- Parallel execution over rows and columns
 - WL parallelism: $R_{im} = NOR(R_{i1}, R_{i2})(i \in [1, m])$
 - BL parallelism: $R_{mi} = NOR(R_{1i}, R_{2i})(i \in [1, m])$

[2] Kvatinsky, S., Member, S., Belousov, D., Liman, S., Satat, G., Member, S., ... Weiser, U. C. (2014). MAGIC — Memristor-Aided Logic. TCAS-II.

RRAM-based Stateful Logic Families

- Support parallel execution
- Functionally complete

Work	Stateful logic operations
[3]	IMP
[2]	NOR, NOT
[4]	NAND, NIMP
[5]	NOR, NAND, Min, OR
[6]	NOR, NOT, NAND, NIMP, XOR

[3] Borghetti, J., Snider, G. S., Kuekes, P. J., Yang, J. J., Stewart, D. R., & Williams, R. S. (2010). "Memristive" switches enable "stateful" logic operations via material implication. *Nature*.

[4] Huang, P., Kang, J., Zhao, Y., Chen, S., Han, R., Zhou, Z., ... Liu, X. (2016). Reconfigurable Nonvolatile Logic Operations in Resistance Switching Crossbar Array for Large-Scale Circuits. *Advanced Materials*.

[5] Avati, V., Eggert, K., & Taylor, C. (2018). FELIX: Fast and Energy-Efficient Logic in Memory. In ICCAD.

[6] Xu, L., Bao, L., Zhang, T., Yang, K., Cai, Y., Yang, Y., & Huang, R. (2018). Nonvolatile memristor as a new platform for non-von Neumann computing. In *ICSICT*.

Background

Theoretical Analysis

Integer Addition

Extension

Experimental Evaluation

Conclusion

SIML Computation Model

- All of the stateful logic families satisfy the four assumptions
 - The latency of a single stateful logic operation is identical.
 - The input number of a single operation cannot exceed a constant.
 - The latency of WL and BL operations is identical.
 - The degree of parallelism can reach the crossbar size. The crossbar size scales with the problem size.

Lower Bounds of the Time Complexity (1)

	(a) Theorem 1	(b) Theorem 2			
Condition	bitwise functions	most arithmetic functions			
Parallelism upper bound	$\max(w, h)$	$O\left(\frac{T}{w+h}\right)$			
Time complexity lower bound	trivial bound : $O\left(\frac{T}{\max(w,h)}\right)$	shape bound: $O(w + h)$			
Example function	$Y_i = X_{i1} \text{ NOR } X_{i2} \ (i = 1, 2,, n)$	$Y_i = \text{NOR}_{k=1}^i X_{k1} \text{ NOR } X_{i2} \ (i = 1, 2,, n)$			
Example algorithm (netlist)	$\begin{array}{c} X_{12} \\ X_{11} \\ X_{11} \\ Y_{1} \\ Y_{1} \\ Y_{1} \\ Y_{1} \\ Y_{n} \\ Y_{n} \end{array}$	$\begin{array}{c} X_{21} \\ X_{n1} \\ X_{n2} \\ Y_{n1} \\ Y_{n} \end{array}$			
Example layout in RRAM	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

O(T): total cycles in the series implementation, w: width of layout (# of BLs), h: height of layout (# of WLs), len_{max} : length of the critical path.

Lower Bounds of the Time Complexity (2)

	(c) Corollary 1	(d) Theorem 3
Condition	square layout	a given algorithm
Parallelism upper bound	$O(\frac{T}{\sqrt{wh}})$	$O\left(\frac{T}{len_{max}}\right)$
Time complexity lower bound	function bound: $O(\sqrt{wh})$	algorithm bound: len_{max}
Example function		$Y = \mathrm{NOR}_{k=1}^{n} X_{k1}$
Example algorithm (netlist)		X_2 X_n X_1 Y
Example layout in RRAM		X_1 X_2 #1 X_n #n-1 Y_n

O(T): total cycles in the series implementation, w: width of layout (# of BLs), h: height of layout (# of WLs), len_{max} : length of the critical path.

Background

Theoretical Analysis

Integer Addition

Extension

Experimental Evaluation

Conclusion

Ripple Carry Adder

time complexity: O(n) shape / algorithm lower bound

One-bit full adder

Pulse	Logic operation
1	$T_1 = \operatorname{NOR}(A, B)$
2	$T_2 = \operatorname{NOR}(A, T_1)$
3	$T_3 = \text{NOR}(B, T_1)$
4	$T_4 = \text{NOR}(T_1, T_2)$
5	$T_5 = \operatorname{NOR}(T_4, C_i)$
6	$C_o = \text{NOR}(T_1, T_5)$
7	$T_6 = \operatorname{NOR}(T_4, T_5)$
8	$T_7 = \operatorname{NOR}(T_5, C_i)$
9	$S = NOR(T_5, T_7)$

A ₁₁	A ₁₂	•••	A_{1n}		
A ₂₁	A ₂₂		A_{2n}		
<i>T</i> ₁₁	<i>T</i> ₁₂		T_{1n}		
•••	:				
T_{41}	T ₄₂		T_{4n}		
T_{51}	T_{52}		<i>T</i> _{5n}		
<i>C</i> _{<i>i</i>1}	C ₀₂ 2		Con		
C ₀₁	$C_{o1}(C_{i2})$		$C_{o(n-1)}(C_{in})$		
T_{61}	T ₆₂	0 0 0	<i>T</i> _{6n}		
		3.	•••		
<i>S</i> ₁	S ₂		S _n		

add *n* BLs in parallel
 generate and propagate carries in series

 $S_{\sqrt{n}}$ $A_{1\sqrt{n}}$ $A_{2\sqrt{n}}$ S_1 A_{11} A_{21} 0 ••• ... • • • $A_{1(2\sqrt{n})}$ $S_{\sqrt{n}+1}$ $S_{2\sqrt{n}}$ $A_{2(\sqrt{n}+1)}$ $A_{2(2\sqrt{n})}$ $A_{1(\sqrt{n}+1)}$ 0 • • • • • • 1 $A_{2(n-\sqrt{n}+1)}$ S_n' $A_{1(n-\sqrt{n}+1)}$ $S_{n-\sqrt{n}+1}$ A_{1n} A_{2n} 0 ••• ... ••• $\mathbf{2}$ $S_{\sqrt{n}+1}$ $A_{1(\sqrt{n}+1)}'$ $A_{2(\sqrt{n}+1)}'$ $S_{2\sqrt{n}}'$ $A_{1(2\sqrt{n})}$ $A_{2(2\sqrt{n})}$ ••• ••• ... • • • • • • $S_{n-\sqrt{n}+1}'$ A_{2n}' S_n' $A_{1(n-\sqrt{n}+1)}$ A_{1n}' $A_{2(n-\sqrt{n}+1)}$ 1 ••• ••• ... 3 *S*₁ $S_{\sqrt{n}}$... ••• ••• • • • • • • • • • $S_{2\sqrt{n}}$ $S_{\sqrt{n}+1}$ ••• ••• • • • • • • $S_{n-\sqrt{n}+1}$ S_n ... • • • • • • ... • • • • • • • • •

copy the input
 select the correct result

(2) add $2\sqrt{n} - 1$ WLs in parallel

Carry Save Adder

time complexity: $O(\sqrt{M})$ function lower bound

<i>a</i> ₁	 $a_{\sqrt{M}}$	<i>A</i> ₁		
$a_{\sqrt{M}+1}$	 $a_{2\sqrt{M}}$	A_2		
	 1	0		
$a_{M-\sqrt{M}+1}$	 a _M	$A_{\sqrt{M}}$		
	 	$\sum a$		

accumulate each WL in parallel
 accumulate the sums in the same BLs

A ₁₁	A ₁₂		•••	A_{1n}		
A ₂₁	A ₂₂			A_{2n}		
A ₃₁	A ₃₂			A _{3n}		
		ন				
C_{o1}	<i>C</i> ₀₂			Con		
PS ₁	PS ₂			PS_n		
shift $C_{o1},, C_{on}$ right						
0	C_{o1}		•••	$C_{o(n-1)}$		
PS ₁	PS ₂	9		PS_n		
	(3)					
<i>S</i> ₁	S ₂			S _n		

add *n* BLs in parallel
 add the last two addends *C_o*, *PS*

Function	two <i>n</i> -bit int	two <i>n</i> -bit integer addition		
Algorithm	ripple carry adder	carry select adder	carry select adder	
Layout	$O(n) \times O(1)$	$O(\sqrt{n}) \times O(\sqrt{n})$	$O(\sqrt{M}) \times O(\sqrt{M})$	
Time complexity	0(n)	$O(\sqrt{n})$	$O(\sqrt{M})$	
Lower bound type	shape / algorithm bound	function / algorithm bound	function bound	

Background

- Theoretical Analysis
- Integer Addition
- Extension
- Experimental Evaluation
- Conclusion

time complexity: $O(\sqrt{M})$ function lower bound

<i>a</i> ₁₁	 $a_{1\sqrt{M}}$	<i>a</i> ₂₁	 $a_{2\sqrt{M}}$	<i>P</i> ₁	 $P_{\sqrt{M}}$	<i>S</i> ₁
$a_{1(\sqrt{M}+1)}$	 $a_{1(2\sqrt{M})}$	$a_{2(\sqrt{M}+1)}$	 $a_{2(2\sqrt{M})}$	$P_{\sqrt{M}+1}$	 $P_{2\sqrt{M}}$	<i>S</i> ₂
•••	 	1	 		 2	
$a_{1(M-\sqrt{M}+1)}$	 <i>a</i> _{1M}	$a_{2(M-\sqrt{M}+1)}$	 a _{2M}	$P_{M-\sqrt{M}+1}$	 P _M	$S_{\sqrt{M}}$
	 •••		 •••	•••	 	
	 •••		 •••		 	
	 		 		 	(3) C _o
	 		 		 	PS
	 		 		 	7
	 		 		 	$A_1 \cdot A_2$

① element-wise multiplication

② accumulate \sqrt{M} WLs in parallel

(3) accumulate S_k s using the carry save adder

[7] Köster, U., Webb, T. J., Wang, X., Nassar, M., Bansal, A. K., Constable, W. H., ... Rao, N. (2017). Flexpoint: An Adaptive Numerical Format for Efficient Training of Deep Neural Networks. arXiv.

¹⁸ Flex-point Support

Background

- Theoretical Analysis
- Integer Addition
- Extension
- Experimental Evaluation
- Conclusion

Integer Algorithm Evaluation

20

[8] Talati, N., Gupta, S., Mane, P., & Kvatinsky, S. (2016). Logic design within memristive memories using memristor-aided loGIC (MAGIC). TNANO.
[9] Imani, M., Gupta, S., & Rosing, T. (2017). Ultra-Efficient Processing In-Memory for Data Intensive Applications. In DAC.

Flex-support Evaluation

Background

- Theoretical Analysis
- Integer Addition
- Extension
- Experimental Evaluation
- Conclusion

- Theoretical analysis
 - SIML model
 - time complexity lower bound
- Integer addition
 - ripple carry adder
 - carry select adder
 - carry save adder
- Extension
 - multiplication support
 - flex-point support

