C

o oA

IIIIIIIIIII
IIIIIIIIIIIIIIII
llllllllllllllllll

O

Parallel Stateful Logic in RRAM: Theoretical
\ Analysis and Arithmetic Design

O Feng Wang, Guojie Luo, Guangyu Sun, Jiaxi Zhang, Peng Huang, Jinfeng Kang

N —

gluo@pku.edu.cn

i,

mailto:gluo@pku.edu.cn

OUTLINE

lllllllll
lllllllllll
lllllllllllll
IIIIIIIIIIIIII

lllllll
lllllllllllllllll

llllllllllllllll
llllllllllll

= Background

LI
lllll
llllll
llllll

RRAM Resistance for Representing Logic Values

WL
I

metal
insulator

metal

I
BL

SET (Uy, — Ugp, > Vsgr)

HRS
(logical 0)

LRS
(logical 1)

RESET (Ug, — Uy > Vreser)

[1] Akinaga, H., & Shima, H. (2010). Resistive random access memory (ReRAM) based on metal oxides. Proceedings of the IEEL.

lllllllllll
llllllllllllllll
llllllllllllllllll
IIIIIIIIIIIIIIIIIIII

RRAM State Switching as Primitive Logic Operations ;%

®» MAGIC NOR implementation Z = NOR(X,Y)
— Ve > 2 Vrpser

™ Parallel execution over rows and columns
— WL parallelism: R;,,, = NOR(R;1, R;») (i € [1,m])
— BL parallelism: R,,;; = NOR(Ry;, Ry;)(i € [1,m])

RRAM cell / BL voltage controller

N T T 7

Ve Ve GND /}?f/ /é | <
] I] %% %

[2] Kvatinsky, S., Member, S., Belousov, D., Liman, S., Satat, G., Member, S., ... Weiser, U. C. (2014). MAGIC — Memristor-Aided Logic. TCAS-II.

RRAM-based Stateful Logic Families
= Support parallel execution

. [3] IMP
= Functionally complete 2] NOR. NOT
[4] NAND, NIMP
[5] NOR, NAND, Min, OR
[6] NOR, NOT, NAND, NIMP, XOR

[3] Borghett, J., Snider, G. S., Kuekes, P.], Yang, J. J., Stewart, D. R., & Williams, R. S. (2010). “Memristive” switches enable “stateful” logic operations via
material implication. Nazure.

[4] Huang, P, Kang, J., Zhao, Y., Chen, S., Han, R., Zhou, Z., ... Liu, X. (2016). Reconfigurable Nonvolatile Logic Operations in Resistance Switching Crossbar
Array for Large-Scale Circuits. Advanced Materials.

[5] Avati, V., Eggert, K., & Taylor, C. (2018). FELIX: Fast and Energy-Efficient Logic in Memory. In ICCAD.

[6] Xu, L., Bao, L., Zhang, T., Yang, K., Cai, Y., Yang, Y., & Huang, R. (2018). Nonvolatile memristor as a new platform for non-von Neumann computing. In
ICSICT.

OUTLINE

»
® Theoretical Analysis
»
»
»

lllllllllllll
llllllllllllllll
lllllllllllllllllll
llllllllllllllllllll

llllllll
lllllllllllllllllll

llllllllllllllll
llllllllllll

llllllllllll
llllllllllllllll
lllllllllllllllllll
llllllllllllllllllll

SIML Computation Model|

lllllllllllllll

» Al| of the stateful logic families satisfy the four assumptions
— The latency of a single stateful logic operation is identical.
— The input number of a single operation cannot exceed a constant.
— The latency of WL and BL operations is identical.

— The degree of parallelism can reach the crossbar size. The crossbar size scales with the problem size.

n Lower Bounds of the Time Complexity (1)

(a) Theorem 1 (b) Theorem 2

Condition bitwise functions most arithmetic functions
Parallelism T
upper bound max(w, h) 0 (W + h)
Ti lexit
'me complextty trivial bound: O (!) shape bound: O(w + h)
lower bound max(w,h)

Example function Y; =X;; NORX;, (i =1,2,...,n)

Y; = NORL_, X,y NORX;, (i = 1,2,.

Example
algorithm (netlist)

X11 X21 Xn1 X11 _}X21 _" ni
Example layout
in RRAM Xiz | Yoz Xng Yiz | Yoo n:
#1 H#1 #1 #n #n #n
v,y v, v, "y, v,

O(T): total cycles in the series implementation, w: width of layout (# of BLs), h: height of layout (# of WLs), len,,,,: length of the critical path.

Lower Bounds of the Time Complexity (2)

(c) Corollary 1 (d) Theorem 3
Condition square layout a given algorithm
: T T
Parallelism 0() 0
upper bound Vwh leNmax
Time complexity) .) '
lower bound function bound: O (~wh) algorithm bound: len,,,,
Example function — Y = NORR_; X)1
Example

algorithm (netlist) @ ‘ °

Example layout #1 #nrl
in RRAM Xl X2 Xn Yn

O(T): total cycles in the series implementation, w: width of layout (# of BLs), h: height of layout (# of WLs), len,,,,: length of the critical path.

OUTLINE

»
»
™ |nteger Addition
»
»

lllllllllllll
llllllllllllllll
lllllllllllllllllll
llllllllllllllllllll

llllllll
lllllllllllllllllll

llllllllllllllll
llllllllllll

Ripple Carry Adder time complexity: O () PLECH,

shape / algorithm lower bound ™ <
One-bit full adder A1y Aqz Atn
1 T, = NOR(4, B) Tiq T | (@D Tin
2 T, = NOR(4,T;) U s
3 T; = NOR(B, T;) Ty1 Ty2 \\/ Tyn
4 T, = NOR(Ty, T3) Tsy Ts; vl Ton
5 Ts = NOR(Ty, C) Ci Co @] - | Con
6 Co = NOR(Ty, T5) Co1 Co1(Cy2) Lz'o(n—l)(Cin)
7 Te = NOR(T4, Ts) Ter Te, Ten
: T, = NOR(Ts, €) @
9 S = NOR(Ts, T,) 5 5, N s,

M@ add n BLs in parallel
(@ generate and propagate carries in series

time complexity: 0(y/n)

Carry Select Adder

function / algorithm lower bound " <

Aqq Aym Azq Ay 0 S1 Syn
A1m+1) A12ym) Az(ym+1) Az2ym) 0 S\m+1 Saym
A(n—ym+1) Ay @ Ay n—ym+1) Azn AND Sn—\/ﬁ+1\\ : Sn’
!/ ! !/ A / \J a fal / [!

Agm+1) A12ym Azym+1) Ao m) I S+ Sayn

Y

Al(n—\/ﬁ+1)’ Ay A2(n—\/ﬁ+1)’ Ay’ 1 Sn—ﬁ+1’ Sn’
5 1O .
S\/ﬁ_l_l al ese | Sz\/ﬁ

Sn—\/ﬁ+1 Sn

@ copy the input @ add 24/n — 1 WLs in parallel

(3 select the correct result

Carry Save Adder

time complexity: 0 (v/'M)

function lower bound

Aqq Aq; A1n
Azq Az, Azp
a a A
! il ! A3y A3z| - Azp
am_l_l aZ\/M ,\ A') =
(\i) ,> fi\ Co1 Coz Con
V z../ ‘_\//_’
Ay —VM+1 aym A4vm|_ PS; PS, PS,
a 1@L shift C,y,Cop, right
0 Col Co(n—l)
(@ accumulate each WL in parallel
(@ accumulate the sums in the same BLs P5, PS5, = PS5y
S1 S2 - Sn

@ add n BLs in parallel
(3 add the last two addends C,, PS

Adder Summary

llllllllllllllll

Function two n-bit integer addition M integer addition

Algorithm ripple carry adder carry select adder carry select adder
Layout 0(n) x 0(1) o(vn) x 0(yn) 0(VM) x 0(VM)
Time complexity 0(n) 0(\/n) 0(VM)

Lower bound type shape / algorithm bound function / algorithm bound function bound

OUTLINE

®» Fxtension

lllllllllllll
llllllllllllllll
lllllllllllllllllll
llllllllllllllllllll

llllllll
lllllllllllllllllll

llllllllllllllll
llllllllllll

Dot Product time complexity: 0 (v/'M)

function lower bound

agq o al\/ﬁ asq o azm P1 P\/M Sl
Ay (VM+1) QA1 2vm) A M+1) QA2 2vm) P i1 P, S7
> S
7 4
Ay M—VM+1) | - Aim Ay M—VM+1) | - Azm Py_viier | - Py N

PS

A A,

@ element-wise multiplication @ accumulate VM WLs in parallel
(3 accumulate Sj,s using the carry save adder

Real Data Type Comparison 7 exponent [mantissa

fixed-point flex-point
II/ \\‘I II/ \: II/ ’ \:

__

float-point

[7] Koster, U., Webb, T. J., Wang, X., Nassar, M., Bansal, A. K., Constable, W. H., ... Rao, N. (2017). Flexpoint: An Adaptive Numerical Format for Efficient Training of
Deep Neural Networks. arXiv.

Flex-point Support

Controller

(G output exponent

e =

) ! exp, exp-, exps
(D input exponent
i Crossbar
| a a a
@) arithmetic instruction ! 11 21 31
[ai, as; aso
®) output status | Q1n A2n Ci3n)

@ shift instruction

N e e e e e e e e e e e = e e = = = e e e e e e = e =

OUTLINE

lllllllllllll
llllllllllllllll
lllllllllllllllllll
llllllllllllllllllll

llllllll
lllllllllllllllllll
lllllllllllllll
llllllllllll

= Fxperimental Evaluation

- J

JEEEEN
| |

Integer Algorithm Evaluation

800 , 1000000 ,
) 600 -o-MAGIC-adder [8] 100000 -—MAGIC-adder [8]
-_— (]
S 400 . 'S 10000
o -B-ripple carry o -5-APIM [9]
200 1000
n carry select k carm save
0 > 100 > i
8 16 24 32 40 48 56 64 16 32 64 128 256 512 10242048
bit width n integer number M
80000 , 4000 , -0-|MAGING [10] -l-Proposed
< 60000 3000 /
< (]
g -@—carry save ©
20000 1000 "
._— .
0O lp—»n——=» = 0 >
16 32 64 128 256 512 1024 2048 64 128 256 512
crossbar size vector dimension M

[8] Talati, N., Gupta, S., Mane, P.,, & Kvatinsky, S. (2016). Logic design within memristive memories using memristor-aided loGIC (MAGIC). TNANO.
[9] Imani, M., Gupta, S., & Rosing, T. (2017). Ultra-Efficient Processing In-Memory for Data Intensive Applications. In DAC.

Flex-support Evaluation

--RRAM -8-ARM

10 4,
8 3 5
O %
> Z 5
c >
3 [o]0]
qJ | -
s 4 3
— < 1
2
0 —— = u .
—— —a
° > 100 400 700 1000
100 400 700 1000
Matrix size M

Matrix size M

OUTLINE

lllllllllllll
llllllllllllllll
lllllllllllllllllll
llllllllllllllllllll

llllllll
lllllllllllllllllll
lllllllllllllll
llllllllllll

= Conclusion j

llllllllllll
llllllllllllllll
lllllllllllllllllll
llllllllllllllllllll

lllllllllllllll

® Theoretical analysis
— SIML model

— time complexity lower bound

® |nteger addition

— ripple carry adder
— carry select adder

— carry save adder

® Extension
— multiplication support

— flex-point support

lllllllllllll
IIIIIIIIIIIIIIII
lllllllllllllllllll

lllll
llllllllllllllllll
llllllllllllllll

