
1

Graph-Morphing: Exploiting Hidden Parallelism

of Non-Stencil Computation in HLS

Mingjie Lin @ ASAP2019

2

FPGA is a Great Computing Platform!

Expose “metal” to compiler

Explicitly manage PEs

Explicitly manage memory

Raw memory bandwidth

GPU Fermi

3.0B Transistor

Virtex 6

2.6B Transistor

Device Ports Power Capacity Agg. Bandwidth

XC6V475T 1064 10s W 4.68 MB 5.22 TB/s

NVIDIA Fermi ~16 100s W many GBs ~0.23 TB/s

3

Stencil Kernel

1) Already well studied in loop optimization.

2) Regular and determined data dependency.

4

Non-Stencil Kernel

• Irregular intra-loop and inter-loop memory dependencies.

• Commonly used in scientific codes.

5

Challenges of Non-Stencil Kernel

• Intra-loop memory reference offsets are not static and

iteration-dependent.

• Memory banking becomes complicated.

• Inter-loop data dependencies are non-uniform across

iterations.

• Loop-carried dependencies are non-uniform.

• Loop pipelining cannot analyze loop-carried

dependencies at compile time, thus optimizing

conservatively.

• Loop unrolling is constrained since the compiler cannot

determine which iterations can be parallelized without

data conflicts.

6

Existing Approaches

• Loop splitting: pipeline the loop with non-uniform

dependencies by splitting it at the iteration where RAW

dependency cannot be guaranteed.

• Memory banking and data reuse: allocate data to multiple

memory banks based on graph coloring.

• Generate a conflict graph according to the kernel.

• Map data to different banks by using a weighted graph

coloring.

7

Research Objective

• How to exploit computation parallelism as well as data

parallelism?

• Explored another optimization to accelerate non-stencil

kernel computing, focusing on loop unrolling instead of loop

pipelining.

• A systematic and automatic way to construct graphs from a

high-level non-stencil kernel code.

• A workflow to regroup and reschedule data and computation

by operating on the constructed graphs in graph theory

domain.

8

Key Idea of Graph Morphing

• A kernel is transformed into

a graph.

• Nodes are memory

locations, incoming edges

are inputs to a iteration,

outcoming edges are data

outputs to other iterations.

• The graph is then

partitioned and processed

using an off-the-shelf graph

processing engine.

9

Operation Precedence Graph Construction

10

Layered Operation Precedence Graph

Construction

11

Layered Data Dependency Graph Construction

12

Edge-Centric Graph Processing

• We adopted the edge-centric and stream-and-apply method

to process the constructed graph.

• Nodes are divided into N ranks, Ri, i = 0 . . . N.

• Edges are divided into N2 partitions, Ei,j, i, j = 0 . . . N.

• Em,n stores edges pointing from Rm to Rn.

• Ranks Ri, i = 0 . . . N are updated sequentially starting from

R0.

• When updating Rk, all ranks with lower priority, i.e. Rj, j ≥ k

serve as source, and edge partitions Ej,k, j ≥ k are streamed

sequentially.

13

Edge-Centric Graph Processing

• Example: assume there are 4 ranks, N = 4

• Update R0: R0 serves as destination block, E0,0, E1,0, E2,0,

and E3,0 are streamed in to update R0.

• Update R1: according to the constructed LDG, it’s

guaranteed there is no edge pointing from R0 to R1,

therefore, E1,0 doesn’t exist. Other ranks are updated

similarly.

14

Hardware Architecture

• Edges are pre-stored in DRAM sent from host through PCIe.

• Nodes are pre-stored in on-chip block memory, each rank is

stored in a separate block.

• There are multiple processing units (PUs) working in parallel

when updating each destination rank.

15

Experiments

• Conducted experiments on four benchmarks which were

studied in other literatures.

16

Little Analysis

• What is the difference between Graph-Morphing and loop

unrolling?

• Loop (partial) unrolling groups iterations into batches and

processes each batch.

• Essentially, Graph-Morphing reorders iterations first, and

then groups into batches.

17

Graph-Based Combinatorial Optimization

Problem Solver

18

Graph-Based Combinatorial Optimization

Problem Solver

• Combinatorial Optimization Problem

• To find an optimal object from a finite set of candidates.

• Widely used in scientific and engineering applications.

• Graph partitioning, max-cut, max-flow, satisfiability,

graph coloring,...

• NP-hard problem and exhaustive search is not tractable.

19

Ising Model and Ising Computing

• Ising model is an abstract mathematical model to describe

ferromagnetism in statistical mechanics.

• Ising model consists of a set of spins interconnected with

each other by a weighted edge. Each spin σi has two

discrete spin values σi ∈ {−1, +1}.

20

Ising Model and Ising Computing

21

Ising Computing

22

Benefits of Ising Model

• Ising model provides a data structure general enough to

express a lot of combinatorial optimization problems.

• Essentially, Ising model is a graph data structure, therefore,

graph-specific optimizations such like vertex traversal and

graph partitioning can be applied.

• By solving Ising model, we get a general combinatorial

optimization problem solver.

23

Mapping Max-Cut To Ising Model

24

State-of-The-Art Approach:

Simulated Annealing

• SA is a heuristic mimicking the thermal annealing.

• Utilizing randomness to avoid local minimum while

getting closer to the global minimum.

• Widely used to solve 2D Ising models. In 2D lattice

model, each spin is only interacting with neighbor spins

such that decreasing local energy also decreases the

global energy.

• But：

• Multiple spins can be evaluated and updated

concurrently. However, to guarantee the convergence,

no neighbor spins can be evaluated.

• Problematic for an arbitrary-topology graph

25

Three-Level Optimizations

• By partitioning the graph such that each partition can fit into

on-chip block memory, FPGA computation resources are

fully utilized.

• By splitting the vertex memory into multiple banks and

scheduling edges to avoid bank conflicts, multiple edges

can be processed concurrently to fully utilize FPGA

parallelism and DRAM bandwidth.

• By designing a hazard detection unit to monitor the

processing pipeline, data hazards are avoided such that the

datapath is fully pipelined, and stalled and flushed on a

conflict.

26

Graph Partitioning

27

Memory Banking

• Data Hazard Detection

Preliminary Results

28

Conclusion

• Graph-Morphing has some limitations:

• Off-chip DRAM is involved to pre-store edges.

• Large hardware usage for some cases.

• Graph-Morphing is a good improvement for loop unrolling.

• All graph operations we designed in Graph-Morphing can

also be used to guide the compiler to unroll a loop, and in

other domains such as auto-parallelizing compiler design.

• Graph-Morphing provides a new perspective for

synthesizing a kernel into a reconfigurable logic.

Preliminary Results

29

Thank you!

