Graph-Morphing: Exploiting Hidden Parallelism
of Non-Stencil Computation in HLS

Mingjie Lin @ ASAP2019

UCF

Stands For Opportunity

FPGA Is a Great Computing Platform!

Expose “metal” to compiler
Explicitly manage PEs
Explicitly manage memory

Al |
=1z

Virtex 6 GPU Fermi

_ 2.6B Transistor 3.0B Transistor
Raw memory bandwidth
Device Ports Power Capacity Agg. Bandwidth

XC6V475T 1064 10sW 4.68 MB 5.22 TB/s
NVIDIAFermi ~16 100sW many GBs ~0.23 TB/s

Stencil Kernel

1) Already well studied in loop optimization.
2) Regular and determined data dependency.

for(int i=1; i<3; i++)//outer loop
for (int j=1; j<3; j++)//inner 1loop
Alil[jl=A[0i][j+1]1+A[i]1[j-1]
+A[i+1][j1+A[i-11031)

Non-Stencil Kernel

 Irreqular intra-loop and inter-loop memory dependencies.
« Commonly used in scientific codes.

for(int i=1; i<3; i++)//outer loop
for(int j=1; j<3; j++)//inner 1loop
A[il[j1=A[j1[3*i-jl+A[2xi][]j]

J
A

“OOOOO
3 OOO

203\0

”OOO

3 4

Challenges of Non-Stencil Kernel

Intra-loop memory reference offsets are not static and
iteration-dependent.

« Memory banking becomes complicated.

Inter-loop data dependencies are non-uniform across
iterations.

« Loop-carried dependencies are non-uniform.

* Loop pipelining cannot analyze loop-carried
dependencies at compile time, thus optimizing
conservatively.

* Loop unrolling is constrained since the compiler cannot
determine which iterations can be parallelized without
data conflicts.

Existing Approaches

« Loop splitting: pipeline the loop with non-uniform
dependencies by splitting it at the iteration where RAW
dependency cannot be guaranteed.

//Loop splitting

for (i = 0; 1 <= 1; i++)
A[2xi] = A[i] + 0.5f;
for (k = 2; k <= 14; k += k)
//0riginal loop with non-uniform for (i = k; i <= min (14, 2%k-1); i++)
//dependences A[2xi] = A[i] + 0.5f;
for (i = 0; i < N; i++) for (i = 15; i < N; i++)
A[2*i] = A[i] + 0.5f; A[2+i] = A[i] + 0.5f

« Memory banking and data reuse: allocate data to multiple
memory banks based on graph coloring.

« Generate a conflict graph according to the kernel.

« Map data to different banks by using a weighted graph
coloring.

Research Objective

How to exploit computation parallelism as well as data
parallelism?

Explored another optimization to accelerate non-stencil
kernel computing, focusing on loop unrolling instead of loop
pipelining.

A systematic and automatic way to construct graphs from a
high-level non-stencil kernel code.

A workflow to regroup and reschedule data and computation
by operating on the constructed graphs in graph theory
domain.

Key ldea of Graph Morphing

 Akernelis transformed into
a graph.

* Nodes are memory
locations, incoming edges
are inputs to a iteration,
outcoming edges are data
outputs to other iterations.

* The graph is then
partitioned and processed
using an off-the-shelf graph .
processing engine.

Rankl =— =— — — —

or (int i =1; i < 3; i++)

Layered Data Dependency Graph (LDG)

ank 0 — — — — —

High-Level Kernel Code Operation Precedence Graph (OPG)

Co)
@@
Data Dependency Graph (DDG) @

o) G |
Layered Operation Precedence. Graph (LPG)
Guary Guaaly (e

Caz
— =— =Rankl
Coa
| Gty (M = = ron2

for (int j = 1; j < 3; j++) —

ALLI[j] = A[JTI3*i-3] + A[2*i][]]

Edge-Centric Graph Processing
Edge Stream

A[1,5]->A[2,1]
Al4,1]->A[2,1]
Al2,4]->A[2,2]

e nen
Al4,2]->A[2,2]
MMMM dst BRAM
Al1,5] Al2,1]
Al4,1] Al2,2]
Al2,4]
Al4,2]

Operation Precedence Graph Construction

e Specifically, for the example kernel, a data-conflict graph is constructed over each iteration
to describe RAW, WAR, and WAW constraints.
e A complete data-conflict graph is constructed by traversing over all iterations.

CAtm]ln]>
I3 x m =D AR x m][n] >

Layered Operation Precedence Graph
Construction

e Reorganize iterations by putting the iterations without data conflicts in the same group,

named Ranks.
e Obey the topologically sorted order. For an edge, source node is placed in a higher-priority

rank than sink node.
e Bellman-ford single-source-shortest-path (SSSP) is used to assign ranks to nodes, by

setting each edge’s weight to -1.

Operation Precedence Graph (OPG) Layered Operation Precedence. Graph (LPG)

@ @ — — — —Ranko0
@ @ > @ - = =Rank1l

() Qi) (ead- — —Rank:

10

Layered Data Dependency Graph Construction

e In LPG, only LHS memory references are included as nodes.

e RHS memory references are instantiated as nodes and added to the graph, forming a
layered data dependency graph (LDG).

e Now we have end-to-end transformed a high-level kernel code, into a layered graph.

e Layer (Rank) means computation order.
e Each node is an involved memory reference.
e Each edge is a data dependency (dataflow).

High-Level Kernel Code Layered Data Dependency Graph (LDG)

for (int i =1; i < 3; i++)
for (int j = 1; j < 3; j++)
A[L1][j] = A[j1[3*1-]] + A[2*1][]]

11

Edge-Centric Graph Processing

We adopted the edge-centric and stream-and-apply method
to process the constructed graph.

Nodes are divided into N ranks, R;, 1=0...N.

Edges are divided into N° partitions, E;;,i,j=0...N.

E., , stores edges pointing from R, to R,..

Ranks R, i=0... N are updated sequentially starting from
R,.

When updating R,, all ranks with lower priority, i.e. R;, j 2 k
serve as source, and edge partitions E;,, j = k are streamed
sequentially.

12

Edge-Centric Graph Processing

« Example: assume there are 4 ranks, N =4
« Update Ry: R, serves as destination block, E o, E; o, E5

destination
IERERERER

and E; 4 are streamed in to update R,,.

Update R;: according to the constructed LDG, it's
guaranteed there is no edge pointing from R, to Ry,
therefore, E, , doesn'’t exist. Other ranks are updated
similarly.

source - source - source - source

[Ro | Ri | Rs | Rs | [Ro [Ri [Ro | Rs | L Ro | Bi [Rs | Rs | [Ro [Ri [R> | Rs |
Eoo|Er0|E20|E30 Ro| | £o,0|E1,0|E20| E3,0 Ro| | Eo,o|E1,0| E20|E30 Ro| |Eo,0|Er1,0|E2,0]|E30
| | o
o S o
By B2 B3 o R, By 1| E2 | B3 2 R, By B2 B 4{% R, Ei11|E21|E31
= Sl cl
Es2| E3 2 Tl R Es2| E3 0l |R2 Esa| B30 Tl R Es2| B3
|| ||| Q|
o o ©
Es 3 R3 E33 R E33 I3 E33
Y | A Y

13

Hardware Architecture

Edges are pre-stored in DRAM sent from host through PCle.

Nodes are pre-stored in on-chip block memory, each rank is
stored in a separate block.

There are multiple processing units (PUs) working in parallel
when updating each destination rank.

Host PA DA
< - PUy | | Rankg |
= ©
» PU, o~ _Rank, |
DM - o :
. O -
I PUp_l I { RankN_l ‘
DRAM A ’ A
L [Controller J«——

Experime

nts

« Conducted experiments on four benchmarks which were

studied Iin othe

r literatures.

Problem & Problem Size (N) {\{let}iod Clock Cycles|Achieved Clock Frequency (MHz)[L 3 1 ml'_cl_e DSP
aseline 79601 475 34 [20 2
UNIQUE_KERNEL (N = 200{_ . nnerloop Pipelining 79204 362 34 20 [2
A[2 * i + 4 j][j + 1] = Ali + 2 * j][i + 4][Tnnerloop Partial Unrolling (Factor = 12) |59701 159 341145 | 24
Outerloop Pipelining/Innerloop Unrolling|56915 140 5913|3723 391
Graph-Morphing 6032 276 3304[1071] 0
line 7081 412 93 150 1 0
PLUTO_TEMPLATE (N = 60) Pas’nnerloop Pipelining 6964 369 101 62 | 0
Ali][j] = Aljlli] + AL - 1] nnerloop Partial Unrolling (Factor = 12) [7022 331 769 [496 | 0
Outerloop Pipelining/Innerloop Unrolling|5253 278 3653|3849 0
Graph-Morphing 1845269 247 3878(1310] 0
aseline 99996 153 208 (1581 2
DIST_ITR (N = 20000 Innerloop Pipelining 20004 144 197225 2
A2 i] = Ali] + 0.5 Innerloop Unrolling (Factor = 12) 35001 142 602 (493 | 4
Outerloop Pipelining/Innerloop Unrolling Out-of-Time"
Graph-Morphing 16407 125 5596|3243 24
Baseline 12805 149 22112121 3
DIST_ITR_PARAM &N 8000) Innerloop Pipelining 16009 146 23912271 4
A[2 + i + 3][j] = Ali][j] + 0. 5 f Innerloop Unrolling (Factor = 12) 32003 143 791 | 460 | 28
Outerloop Pipelining/Innerloop Unrolling Out-of-Time"
Graph-Morphing 10849 132 [5925[3195] 24

15

Little Analysis

« What is the difference between Graph-Morphing and loop
unrolling?

* Loop (partial) unrolling groups iterations into batches and
processes each batch.

+ Essentially, Graph-Morphing reorders iterations first, and
then groups into batches.

— Al6][2] = A[3][5] - — Ale][2] = A[3][5] ~
Exploitable Parallelism: 12 Exploitable Parallelism: 13
Phasel— ... ™ Data Conflict: 0 Phasel — <= Data Conflict: 0
- - — A[24][6] = A[12][6] —
— A[8]|2] = Al4][6 -
18] [2] = Al4](e] ~ AlBl2l=All6] \A
Al24][6] = A[12][6] Exploitable Parallelism: 11 Tt Tt T T EproitabIc_eParaIIeIism: 11
Phase2 =™ ... bataconficc [Data Conflict: 1 Phase2 —4 '======-=-=--= L Data Conflict: 0
Al48][12] = A[24][6] A[48][12] = A[24][6]

16

Graph-Based Combinatorial Optimization
Problem Solver

17

Graph-Based Combinatorial Optimization
Problem Solver

« Combinatorial Optimization Problem
 To find an optimal object from a finite set of candidates.
« Widely used in scientific and engineering applications.

« Graph partitioning, max-cut, max-flow, satisfiability,
graph coloring,...

* NP-hard problem and exhaustive search is not tractable.

....................

Graph partitioning Max cut

Ising Model and Ising Computing

 Ising model is an abstract mathematical model to describe
ferromagnetism in statistical mechanics.

 Ising model consists of a set of spins interconnected with
each other by a weighted edge. Each spin o, has two
discrete spin values o, € {-1, +1}.

19

Ising Model and Ising Computing

m The energy of each spin is defined as:

H,'(O',') = — ZJ,‘JO',‘O'J' — h,‘O’,‘
J

where J; j is the interaction weight between o; and o, and h; is a bias or external force
acting on o;.

m The total energy of the model is defined as:

H(O’l,O'z,.. .,O’n) = —% ZZJ,‘JU,‘O’] — Zh,‘O’,’
i J i

20

Ising Computing

m Ising computing is to search for a setting of & = 01,0»,...,0, to minimize H(&).
m N number of spins contain 2V number of settings, such that Ising model is a NP-hard

problem.
m The most common approach to solve Ising model is Simulated Annealing.

\ Local minima
\‘/I‘/
6 \ S
\ /
@ \ /) \ /
IS *. ‘// I\‘ || I\‘ J.'I \'.‘ r/
N \] \ | ‘\ F
\‘ \ |“ A/
Global \ /
minimum 3/

States

L |
21

Benefits of Ising Model

* Ising model provides a data structure general enough to
express a lot of combinatorial optimization problems.

« Essentially, Ising model is a graph data structure, therefore,
graph-specific optimizations such like vertex traversal and

graph partitioning can be applied.
« By solving Ising model, we get a general combinatorial
optimization problem solver.

Max-Cut Definition
Partitioning a graph into two subsets S and S, such that the sum of weighted edges between
vertices of the two sets are maximized. Given a graph G = (V/, E), assign variable x; to each

vertex: | (1)
Pl T e _
max > ZZ s.t. x;€{1,—1}
i

2

22

Mapping Max-Cut To Ising Model

m Each vertex is assigned to an Ising spin 0; € {—1,+1}, where £1 indicates two groups.
m Set J,',j = —W;j, and h; =0
m Then

1 N N
Elsing — _5 E E :Ji,jo_f-aj
i=1 j=1

O'JJ Elsing 1 Y
Iy yw i B lyrehy

i=1 j=1 i=1 j=1
m [o find a max cut value of a graph is mapped to searching for the minimum energy of an

Ising model.

23

State-of-The-Art Approach:
Simulated Annealing

« SAIs a heuristic mimicking the thermal annealing.

 Utilizing randomness to avoid local minimum while
getting closer to the global minimum.

* Widely used to solve 2D Ising models. In 2D lattice
model, each spin is only interacting with neighbor spins
such that decreasing local energy also decreases the
global energy.

e But:

« Multiple spins can be evaluated and updated
concurrently. However, to guarantee the convergence,
no neighbor spins can be evaluated.

* Problematic for an arbitrary-topology graph

24

Three-Level Optimizations

« By partitioning the graph such that each partition can fit into
on-chip block memory, FPGA computation resources are
fully utilized.

* By splitting the vertex memory into multiple banks and
scheduling edges to avoid bank conflicts, multiple edges
can be processed concurrently to fully utilize FPGA
parallelism and DRAM bandwidth.

* By designing a hazard detection unit to monitor the
processing pipeline, data hazards are avoided such that the
datapath is fully pipelined, and stalled and flushed on a
conflict.

25

Graph Partitioning

destination

-

m Vertices are partitioned into P intervals.

undirected.

m When processing one edge shard, corresponding source intervals and destination intervals
are loaded to two on-chip memories first before the edge shard is streamed in.

source

(h [L &%)

So.0 | S10 | S20 | Szo
S].] 52‘1 531

Sza | Saz

S3.3

destination

m Edges are partitioned into P(P+1)

2

shards instead of P? partitions since edges are

source

ENNADARA

Soo | S1o | S20 | Sz0
S| Saa | Saa
Sz | Sa2

833

destination

source

(o [L[B

Soo | S1o0 | S20 | Sso
St | Sax | Ssn

Sap | 832

S33

destination

Iy
I
I,

I3

source

(5[L] 5%

So0 | S1,0 | S20 | S30
S11 | S2q1 | Ssa
Saz | Sz

53,3

26

Memory Banking

m To increase parallelism, source memory and destination memory are both partitioned into
M banks. Vertex v; is put at 7; offset within the (i%M)-th bank.

m By memory banking, a batch of M edges can be streamed in and get processed if there is
no bank conflict.

m To guarantee there is no bank conflict within each batch, edges within each shard are
rescheduled such that edges without bank conflicts are grouped into batches.

« Data Hazard Detection

m The datapath is fully pipelined such that each clock cycle, a new edge batch can get
processed.

m To guarantee there is no data hazard, we designed an unit to detect if the current batch
has conflict with all the other batches being processed in the pipeline. If there is any data
hazard, the new edge batch is held until the conflict gets resolved.

27

Conclusion

Graph-Morphing has some limitations:

« Off-chip DRAM is involved to pre-store edges.

« Large hardware usage for some cases.
Graph-Morphing is a good improvement for loop unrolling.

All graph operations we designad in Graph-Morphing can
also be used to guide the compiler to unroll a loop, and in
other domains such as auto-parallelizing compiler design.

Graph-Morphing provides a new perspective for
synthesizing a kernel into a reconfigurable logic.

28

Thank you!

