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FPGA is a Great Computing Platform!

Expose “metal” to compiler

Explicitly manage PEs

Explicitly manage memory

Raw memory bandwidth

GPU Fermi

3.0B Transistor

Virtex 6

2.6B Transistor

Device              Ports    Power     Capacity        Agg. Bandwidth

XC6V475T       1064     10s W      4.68 MB        5.22 TB/s

NVIDIA Fermi   ~16      100s W    many GBs ~0.23 TB/s
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Stencil Kernel

1) Already well studied in loop optimization. 

2) Regular and determined data dependency.
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Non-Stencil Kernel

• Irregular intra-loop and inter-loop memory dependencies. 

• Commonly used in scientific codes.
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Challenges of Non-Stencil Kernel

• Intra-loop memory reference offsets are not static and 

iteration-dependent. 

• Memory banking becomes complicated.

• Inter-loop data dependencies are non-uniform across 

iterations. 

• Loop-carried dependencies are non-uniform. 

• Loop pipelining cannot analyze loop-carried 

dependencies at compile time, thus optimizing 

conservatively.

• Loop unrolling is constrained since the compiler cannot 

determine which iterations can be parallelized without 

data conflicts.
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Existing Approaches

• Loop splitting: pipeline the loop with non-uniform 

dependencies by splitting it at the iteration where RAW 

dependency cannot be guaranteed.

• Memory banking and data reuse: allocate data to multiple 

memory banks based on graph coloring. 

• Generate a conflict graph according to the kernel.

• Map data to different banks by using a weighted graph 

coloring.
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Research Objective

• How to exploit computation parallelism as well as data 

parallelism? 

• Explored another optimization to accelerate non-stencil 

kernel computing, focusing on loop unrolling instead of loop 

pipelining.

• A systematic and automatic way to construct graphs from a 

high-level non-stencil kernel code.

• A workflow to regroup and reschedule data and computation 

by operating on the constructed graphs in graph theory 

domain.
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Key Idea of Graph Morphing

• A kernel is transformed into 

a graph.

• Nodes are memory 

locations, incoming edges 

are inputs to a iteration, 

outcoming edges are data 

outputs to other iterations.

• The graph is then 

partitioned and processed 

using an off-the-shelf graph 

processing engine.
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Operation Precedence Graph Construction
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Layered Operation Precedence Graph 

Construction
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Layered Data Dependency Graph Construction
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Edge-Centric Graph Processing

• We adopted the edge-centric and stream-and-apply method 

to process the constructed graph.

• Nodes are divided into N ranks, Ri, i = 0 . . . N. 

• Edges are divided into N2 partitions, Ei,j, i, j = 0 . . . N. 

• Em,n stores edges pointing from Rm to Rn.

• Ranks Ri, i = 0 . . . N are updated sequentially starting from 

R0. 

• When updating Rk, all ranks with lower priority, i.e. Rj, j ≥ k 

serve as source, and edge partitions Ej,k, j ≥ k are streamed 

sequentially.
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Edge-Centric Graph Processing

• Example: assume there are 4 ranks, N = 4 

• Update R0: R0 serves as destination block, E0,0, E1,0, E2,0, 

and E3,0 are streamed in to update R0.

• Update R1: according to the constructed LDG, it’s 

guaranteed there is no edge pointing from R0 to R1, 

therefore, E1,0 doesn’t exist. Other ranks are updated 

similarly.
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Hardware Architecture

• Edges are pre-stored in DRAM sent from host through PCIe.

• Nodes are pre-stored in on-chip block memory, each rank is 

stored in a separate block. 

• There are multiple processing units (PUs) working in parallel 

when updating each destination rank.
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Experiments

• Conducted experiments on four benchmarks which were 

studied in other literatures.
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Little Analysis

• What is the difference between Graph-Morphing and loop 

unrolling?

• Loop (partial) unrolling groups iterations into batches and 

processes each batch. 

• Essentially, Graph-Morphing reorders iterations first, and 

then groups into batches.
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Graph-Based Combinatorial Optimization 

Problem Solver
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Graph-Based Combinatorial Optimization 

Problem Solver

• Combinatorial Optimization Problem

• To find an optimal object from a finite set of candidates.

• Widely used in scientific and engineering applications.

• Graph partitioning, max-cut, max-flow, satisfiability, 

graph coloring,...

• NP-hard problem and exhaustive search is not tractable.
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Ising Model and Ising Computing

• Ising model is an abstract mathematical model to describe 

ferromagnetism in statistical mechanics. 

• Ising model consists of a set of spins interconnected with 

each other by a weighted edge. Each spin σi has two 

discrete spin values σi ∈ {−1, +1}.
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Ising Model and Ising Computing
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Ising Computing
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Benefits of Ising Model

• Ising model provides a data structure general enough to 

express a lot of combinatorial optimization problems. 

• Essentially, Ising model is a graph data structure, therefore, 

graph-specific optimizations such like vertex traversal and 

graph partitioning can be applied. 

• By solving Ising model, we get a general combinatorial 

optimization problem solver.
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Mapping Max-Cut To Ising Model
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State-of-The-Art Approach: 

Simulated Annealing

• SA is a heuristic mimicking the thermal annealing.

• Utilizing randomness to avoid local minimum while 

getting closer to the global minimum.

• Widely used to solve 2D Ising models. In 2D lattice 

model, each spin is only interacting with neighbor spins 

such that decreasing local energy also decreases the 

global energy.

• But：

• Multiple spins can be evaluated and updated 

concurrently. However, to guarantee the convergence, 

no neighbor spins can be evaluated.

• Problematic for an arbitrary-topology graph
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Three-Level Optimizations

• By partitioning the graph such that each partition can fit into 

on-chip block memory, FPGA computation resources are 

fully utilized.

• By splitting the vertex memory into multiple banks and 

scheduling edges to avoid bank conflicts, multiple edges 

can be processed concurrently to fully utilize FPGA 

parallelism and DRAM bandwidth.

• By designing a hazard detection unit to monitor the 

processing pipeline, data hazards are avoided such that the 

datapath is fully pipelined, and stalled and flushed on a 

conflict.
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Graph Partitioning
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Memory Banking

• Data Hazard Detection

Preliminary Results
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Conclusion

• Graph-Morphing has some limitations: 

• Off-chip DRAM is involved to pre-store edges. 

• Large hardware usage for some cases.

• Graph-Morphing is a good improvement for loop unrolling. 

• All graph operations we designed in Graph-Morphing can 

also be used to guide the compiler to unroll a loop, and in 

other domains such as auto-parallelizing compiler design.

• Graph-Morphing provides a new perspective for 

synthesizing a kernel into a reconfigurable logic.

Preliminary Results
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Thank you!


