
Understanding Performance Gains
of Accelerator-Rich Architectures

Zhenman Fang

Assistant Professor

Computer Engineering, SFU

Email: zhenman@sfu.ca

http://www.sfu.ca/~zhenman

mailto:zhenman@sfu.ca
http://www.sfu.ca/~zhenman

2

The Power Wall and Customized Accelerators

Source: Shekhar Borkar, Intel

The famous power wall !

Power doubles every 4 years

Customized accelerators !

ASIC

e.g., Google

TPU v3

GPU

e.g., Nvidia

Tesla GPUs

FPGA

e.g., Xilinx

Alveo FPGAs

3

M $ $ C C $ $ M

$ $ $ C C $ $ $

C C C C C C C C

A A A A A A A A

A A A GAM A A A A

C C C C C C C C

$ $ $ C C $ $ $

M $ $ C C $ $ M

Trend of Accelerator-Rich Architectures (ARA)

Global Accelerator

Manager (GAM)

[UCLA, DAC 12 & DAC 14]

CoreC

M Memory Controller

NoC Router

$ Cache Banks

ABB: Accelerator Building Block

DMA A
B

B

A
B

B

A
B

B

A
B

B

BUF

Dedicated/Composable

Accelerators

4

M $ $ C C $ $ M

$ $ $ C C $ $ $

C C C C C C C C

A A A A A A A A

A A A GAM A A A A

C C C C C C C C

$ $ $ C C $ $ $

M $ $ C C $ $ M
[Cong, DAC 12 & DAC 14]

CoreC

M Memory Controller

NoC Router

ABB: Accelerator Building Block

$ Cache Banks

DMA A
B

B

A
B

B

A
B

B

A
B

B

BUF

Dedicated/Composable

Accelerators

Extended gem5 for X86

CPU & the rest of system

Auto-generated accelerators

based on HLS (C->RTL->timing)

Added BUF, DMA,

GAM & TLB model

PARADE: Platform for ARA Design & Exploration

Paper at [ICCAD'15], Tutorials at [ISCA'15 & MICRO'16]

PARADE open source link: http://vast.cs.ucla.edu/software/parade-ara-simulator

http://vast.cs.ucla.edu/software/parade-ara-simulator

5

Example Acceleration Results.. and Insights?

Low-dose CT screening for lung cancer One accelerator processing

element (PE) vs. one X86 core

0

4

8

12

16

20

P
er

fo
rm

an
ce

 s
p

ee
d

u
p

More benchmarks and results available in paper.

6

Gains from Both Computation and Memory

0%

20%

40%

60%

80%

100%

E
xe

cu
ti

o
n

 t
im

e
%

CPU-Computation CPU-Memory

CPU performance [optimized]

0%

4%

8%

12%

16%

20%

E
xe

cu
ti

o
n

 t
im

e
%

Acc-Computation Acc-Memory

Accelerator performance

#1 more speedup from

memory customization

7

Gains from Computation Customization

-- - - - -

* * * * * *
+ + +

+

+

sqrt

1/x

1/ (xc - xi)
2

i=0

5

å
Denoise core

computation:

#2 customized accelerator pipeline

a) fine-grained parallelism:

more flexible than SIMD

c) coarse-grained parallelism:

by duplicate this pipeline

b) customized pipeline:

no instruction overhead

load Xc

load Xi

sub Xc – Xi

store result

CPU execution

Acc execution

6.1x speedup

8

Memory Customization

WriteComputeRead Tile 0
Time

D
at

a
ti

le
s

#3 Memory access reduction

#4 Memory-level parallelism improvement

Aggregate all data accesses in a tile to a short

read/write period to overlap access latency

WriteComputeRead Tile 1

WriteComputeRead Tile 2

Overlapping

WriteComputeReadTile n

9

Gains from Memory Customization

0

5

10

15

20

25

30

35

40

H
id

d
en

M
is

se
s

P
er

 K
ilo

 C
yc

le
s

(M
P

K
C

)

Hidden-MPKC-CPU Hidden-MPKC-Acc

0.0

0.5

1.0

1.5

N
o

rm
al

iz
ed

 #
 o

f
m

em
o

ry
 a

cc
es

se
s

Memory-CPU Memory-Acc

#3 Memory access

reduction is not the key!

#4 Memory-level parallelism

improvement is the key!

These insights apply to a wide range of

applications, please refer to our paper.

10

ARA (Multi-PE) vs. GPU

0

10

20

30

40

0

50

100

150

200

deb den reg seg bsc stc swap lpcip tsyn robl dmap slam avg

Medical Imaging Commercial Vision Navigation

P
er

/w
at

t
im

p
ro

ve
m

en
t

(l
in

e)

S
p

ee
d

u
p

 o
ve

r
C

P
U

 (
h

is
to

g
ra

m
)

ARA-16-PE GPU-16-SM ARA perf/watt improve over GPU

656x, 348x218x 392x, 364x

94x, 68x,

18x

11

Although their performance and energy advantages are clear,

ASICs have high design cost and lack flexibility

Let’s look at more programmable accelerators

GPU

e.g., Nvidia

Tesla GPUs

FPGA

e.g., Xilinx

Alveo FPGAs

vs.

Programmable Accelerators: FPGA vs. GPU

12

Applying the Insights into FPGA Accelerators

+
x

x
+

PE0

+
x

x
+

PE1

In 2

buffer

set 1

In 3

Out 2

Out 3

buffer

set 1

In 4

buffer

set 0

In 5

Out 0

Out 1

buffer

set 2

#1: Buffering #4: Double buffer

FPGA

DRAMInput Output

#2: Customized pipeline

#3
:

P
ar

al
le

liz
at

io
n

#5: Memory coalescing and bursting

Kernel design

in HLS C

CPU-FPGA

communication

in OpenCL

Xilinx SDAccel

2016.4 (updating)

For fair comparison, we port the widely recognized GPU benchmark suite Rodinia to FPGA

using HLS C, and apply the prior insights during porting

13

Preliminary GPU-FPGA Comparison [FCCM 2018]

0

1

2

3

4

5

H
o

ts
p

o
t

G
IC

O
V

D
ila

te

M
G

V
F

S
R

A
D

B
P

-1

B
P

-2

S
te

p
F

a
c
to

r

F
lu

x

L
U

D

K
m

e
a

n
s

K
N

N

S
C

N
W P
F

g
e

o
m

e
a

n

SGrid USGrid DLA DP

F
P

G
A

/G
P

U
 i

m
p

ro
v

e
m

e
n

t

performance performance/watt

Performance: out of 15 kernels, 3 FPGA kernels win, 3 kernels comparable

Performance/watt: 6 FPGA kernels win, 4 kernels is > 2x worse than GPU

1x

0.5x

7.8x 7.5x

✓ 28 nm: Nvidia Tesla K40

vs. Xilinx Vertex 7 690T

✓ Rodinia: CUDA vs HLS-C

, 19.3x

Structured Grid Unstructured Grid
Dense Linear

Algebra

Dynamic

Programming

✓ FPGA win: customized

pipeline and precision

✓ FPGA limit: frequency

and memory bandwidth

14

The power wall has led to the trend of heterogeneous

accelerator-rich architectures (ARAs)

The performance gains of ARAs come from

▪ Computation customization: 1) customized accelerator pipeline, and

2) coarse-grained parallelism

▪ Memory customization (often more important): 1) memory access

reduction and 2) improved memory level parallelism (often the key)

Future directions

▪ Better understand when apps run better on FPGAs, when on GPUs

▪ Near data acceleration architectures and systems, with

corresponding programming, compiler, and runtime support

Conclusion and Future Directions

15

Thank You!

More info at http://www.sfu.ca/~zhenman

Postdoc

Fellowship

Past Sponsors Current Sponsors

Simon Fraser

University

http://www.sfu.ca/~zhenman/

16

Backup Slides

17

HLS-based Automatic Accelerator/App Generation

Program

Generator

Application

Dataflow

Accelerator

Source Code

Simulation Module

Generator
Accelerators

chaining infoSimulation

module info

Simulation

Module

High-Level

Synthesis

C function

to accelerate

Timing info

e.g., II, clk

RTL

Synthesis

RTL

model

OutputToolInput

Handles accelerator

communication, task

buffer, interrupts, …

Generated

Program

18

Customize Your Own Accelerator (e.g., Denoise)

1/ (xc - xi)
2

i=0

5

å

ABB1, Type = Poly

Input: Mem, Output:ABB2

Function:(x0-y0),(x1-y1), ...

ABB2, Type = Poly

Input: ABB1, Output: ABB3

Function: x0*y0+x1*y1+....

ABB3, Type = Sqrt

Input: ABB2, Output: ABB4

Function: sqrt(x)

ABB4, Type = Divide

Input: ABB3, Output: Mem

Function: 1/x

Denoise core

computation:

M
em

In
p

u
t

M
em

O
u

tp
u

t

Auto-generated

accelerator for

each ABB function

Auto-generated application using

accelerator chaining data flow
ABB: Accelerator

Building Block

19

(Automated) Application Execution on ARA

Extended ISA

acc-req type

acc-rsrv id, time

acc-cmd id, cmd, addr

acc-free id

Mem
Task

description

1. Request available accelerators (acc-req)

2. Response available ones & waiting time

3. Request reservation (acc-rsv) and wait

4. Reserve accelerator, send it the core ID

5. The core shares a task description and

start the accelerator (acc-cmd)

4

CPU GAM

Acc

1

2

3

4

45

5

6

6. Read task & start work

7. Work done, notify the GAM

8. Free accelerators (acc-free)

Users don’t have to worry about these,

we provide a dataflow language and tool

to automatically generate the library

7

GAM: Global

Acc Manager

20

FPGA vs GPU Results

✓ Ported a comprehensive set of 15 kernels from widely-used GPU

benchmark suite Rodinia to FPGA using HLS C

• Performance: 3 FPGA kernels win, 3 kernels comparable

• Perf/watt: 6 FPGA kernels win, 4 kernels is > 2x worse than GPU

✓ Proposed an analytical model with new metrics (pipe_OPC and

e_para_factor) to analyze FPGA and GPU performance

• FPGAs often have better pipe_OPC due to their pipeline customization

• FPGAs often lose in e_para_factor due to off-chip BW limitation

• With higher BW, 9 out of 15 FPGA kernels achieve > half of GPU perf

✓ Future work: port to the latest Amazon F1 instance for FPGA and P3

instance for GPU, compare and analyze perf and perf/dollar

