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The Power Wall and Customized Accelerators

Source: Shekhar Borkar, Intel

The famous power wall !

Power doubles every 4 years

Customized accelerators !

ASIC

e.g., Google

TPU v3

GPU

e.g., Nvidia

Tesla GPUs

FPGA

e.g., Xilinx

Alveo FPGAs
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Trend of Accelerator-Rich Architectures (ARA)

Global Accelerator 

Manager (GAM)

[UCLA, DAC 12 & DAC 14]
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Dedicated/Composable 

Accelerators

Extended gem5 for X86 

CPU & the rest of system

Auto-generated accelerators 

based on HLS (C->RTL->timing)

Added BUF, DMA, 

GAM & TLB model

PARADE: Platform for ARA Design & Exploration

Paper at [ICCAD'15], Tutorials at [ISCA'15 & MICRO'16]

PARADE open source link: http://vast.cs.ucla.edu/software/parade-ara-simulator

http://vast.cs.ucla.edu/software/parade-ara-simulator
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Example Acceleration Results.. and Insights?

Low-dose CT screening for lung cancer One accelerator processing

element (PE) vs. one X86 core
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More benchmarks and results available in paper.
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Gains from Both Computation and Memory
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#1 more speedup from

memory customization
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Gains from Computation Customization
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å
Denoise core 

computation:

#2 customized accelerator pipeline

a) fine-grained parallelism:

more flexible than SIMD

c) coarse-grained parallelism:

by duplicate this pipeline

b) customized pipeline:   

no instruction overhead

load Xc

load Xi

sub Xc – Xi

store result

CPU execution

Acc execution

6.1x speedup
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Memory Customization

WriteComputeRead Tile 0
Time
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#3 Memory access reduction

#4 Memory-level parallelism improvement

Aggregate all data accesses in a tile to a short

read/write period to overlap access latency

WriteComputeRead Tile 1

WriteComputeRead Tile 2

Overlapping

WriteComputeReadTile n
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Gains from Memory Customization
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#3 Memory access 

reduction is not the key!

#4 Memory-level parallelism 

improvement is the key!

These insights apply to a wide range of 

applications, please refer to our paper.
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ARA (Multi-PE) vs. GPU
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ARA-16-PE GPU-16-SM ARA perf/watt improve over GPU

656x, 348x218x 392x, 364x

94x, 68x,

18x
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Although their performance and energy advantages are clear,

ASICs have high design cost and lack flexibility

Let’s look at more programmable accelerators

GPU

e.g., Nvidia

Tesla GPUs

FPGA

e.g., Xilinx

Alveo FPGAs

vs.

Programmable Accelerators: FPGA vs. GPU



12

Applying the Insights into FPGA Accelerators
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In 4

buffer

set 0

In 5

Out 0

Out 1

buffer
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#1: Buffering #4: Double buffer

FPGA 

DRAMInput Output

#2: Customized pipeline

#3
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#5: Memory coalescing and bursting

Kernel design 

in HLS C

CPU-FPGA

communication 

in OpenCL

Xilinx SDAccel

2016.4 (updating)

For fair comparison, we port the widely recognized GPU benchmark suite Rodinia to FPGA

using HLS C, and apply the prior insights during porting
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Preliminary GPU-FPGA Comparison [FCCM 2018]
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Performance: out of 15 kernels, 3 FPGA kernels win, 3 kernels comparable

Performance/watt: 6 FPGA kernels win, 4 kernels is > 2x worse than GPU

1x

0.5x

7.8x 7.5x

✓ 28 nm: Nvidia Tesla K40

vs. Xilinx Vertex 7 690T

✓ Rodinia: CUDA vs HLS-C

, 19.3x

Structured Grid Unstructured Grid
Dense Linear

Algebra

Dynamic

Programming

✓ FPGA win: customized

pipeline and precision

✓ FPGA limit: frequency 

and memory bandwidth
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The power wall has led to the trend of heterogeneous

accelerator-rich architectures (ARAs)

The performance gains of ARAs come from

▪ Computation customization: 1) customized accelerator pipeline, and

2) coarse-grained parallelism

▪ Memory customization (often more important): 1) memory access

reduction and 2) improved memory level parallelism (often the key)

Future directions

▪ Better understand when apps run better on FPGAs, when on GPUs

▪ Near data acceleration architectures and systems, with

corresponding programming, compiler, and runtime support

Conclusion and Future Directions
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Thank You!

More info at http://www.sfu.ca/~zhenman

Postdoc

Fellowship

Past Sponsors Current Sponsors

Simon Fraser

University

http://www.sfu.ca/~zhenman/
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Backup Slides
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HLS-based Automatic Accelerator/App Generation

Program

Generator

Application 

Dataflow

Accelerator

Source Code

Simulation Module 

Generator
Accelerators 

chaining infoSimulation 

module info

Simulation 

Module

High-Level 

Synthesis

C function 

to accelerate

Timing info 

e.g., II, clk

RTL 

Synthesis

RTL 

model

OutputToolInput

Handles accelerator 

communication, task 

buffer, interrupts, …

Generated 

Program
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Customize Your Own Accelerator (e.g., Denoise)
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ABB1, Type = Poly

Input: Mem, Output:ABB2 

Function:(x0-y0),(x1-y1), ... 

ABB2, Type = Poly

Input: ABB1, Output: ABB3 

Function: x0*y0+x1*y1+.... 

ABB3, Type = Sqrt

Input: ABB2, Output: ABB4 

Function: sqrt(x) 

ABB4, Type = Divide 

Input: ABB3, Output: Mem

Function: 1/x 

Denoise core 

computation:

M
em
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t

Auto-generated 

accelerator for 

each ABB function 

Auto-generated application using 

accelerator chaining data flow
ABB: Accelerator 

Building Block
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(Automated) Application Execution on ARA

Extended ISA

acc-req type

acc-rsrv id, time

acc-cmd id, cmd, addr

acc-free  id

Mem
Task 

description

1. Request available accelerators (acc-req)

2. Response available ones & waiting time

3. Request reservation (acc-rsv) and wait

4. Reserve accelerator, send it the core ID

5. The core shares a task description and

start the accelerator (acc-cmd)

4

CPU GAM

Acc

1

2

3

4

45

5

6

6. Read task & start work

7. Work done, notify the GAM

8. Free accelerators (acc-free)

Users don’t have to worry about these,

we provide a dataflow language and tool

to automatically generate the library

7

GAM: Global

Acc Manager
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FPGA vs GPU Results

✓ Ported a comprehensive set of 15 kernels from widely-used GPU 

benchmark suite Rodinia to FPGA using HLS C

• Performance: 3 FPGA kernels win, 3 kernels comparable

• Perf/watt: 6 FPGA kernels win, 4 kernels is > 2x worse than GPU

✓ Proposed an analytical model with new metrics (pipe_OPC and 

e_para_factor) to analyze FPGA and GPU performance

• FPGAs often have better pipe_OPC due to their pipeline customization

• FPGAs often lose in e_para_factor due to off-chip BW limitation

• With higher BW, 9 out of 15 FPGA kernels achieve > half of GPU perf

✓ Future work: port to the latest Amazon F1 instance for FPGA and P3 

instance for GPU, compare and analyze perf and perf/dollar


