PPAC: A Versatile In-Memory Accelerator for Matrix-Vector-Product-Product-Like Operations

Oscar Castañeda

Joint work with Maria Bobbett, Alexandra Gallyas-Sanhueza, and Christoph Studer
PIM breaks through the memory wall

Processing in memory (PIM)

Traditional (non-PIM) architectures

Flexible (PIM) architectures

Von Neumann-based architectures

Efficiency vs. Flexibility

ASIC → GPU → FPGA → CPU

PIM increases efficiency!

↑ Time
↑ Energy
↑ Bandwidth

Efficiency

Memory

Logic

Control

ALU
Exploring PIM architectures

- **Application-specific PIM [3]**
 - High throughput and efficient architecture tailored for a given application
 - Often only support a single task: Flexibility ↓

- **This work: PPAC**
 - An efficient yet flexible PIM accelerator

- **General-purpose PIM [1,2]**
 - Hardware support for atomistic operations (e.g., AND/NOR)
 - More complex tasks repeatedly use atomistic operations: Throughput ↓, Efficiency ↓

PPAC builds upon CAMs

- **Parallel Processor in Associative Content-addressable memory**
- Each CAM row compares its stored word a_m with the input x
- **Hamming similarity**: Number of matching bits between a_m and x
 - $h(a_m, x) = N - h(a_m, x)$, where h is the Hamming distance and N the number of bits in a_m and x
- A CAM declares a match if $h(a_m, x) = N$
PPAC computes Hamming similarities

• Every row computes and processes \(\tilde{h}(a_m, x) \)
• Programmable threshold \(\delta \):
 Match if \(\tilde{h}(a_m, x) \geq \delta_m \)
 • Complete match: \(\delta_m = N \) (standard CAM)
 • Similarity match: \(\delta_m < N \)

Hamming similarity

• Single-cycle operation
✓ CAM Applications [1]
 • Network switches and routers
 • Computer caches
✓ Content Addressable Parallel Processor (CAPP) [2]
 • Based on similarity matches
✓ Particle track reconstruction [3]
✓ Approx. nearest neighbor search
 • Locality sensitive hashing
 • Indoor localization via fingerprinting

Exploiting Hamming similarities

<table>
<thead>
<tr>
<th>a</th>
<th>x</th>
<th>a XNOR x</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI</td>
<td>HI</td>
<td>HI</td>
</tr>
<tr>
<td>HI</td>
<td>LO</td>
<td>LO</td>
</tr>
<tr>
<td>LO</td>
<td>HI</td>
<td>LO</td>
</tr>
<tr>
<td>LO</td>
<td>LO</td>
<td>HI</td>
</tr>
</tbody>
</table>

\[\langle a_m, x \rangle = \sum_{n=1}^{N} a_{m,n} x_n \]

\[\langle a_m, x \rangle = -N + 2\bar{h}(a_m, x) \]

\[
\begin{bmatrix}
\langle a_1, x \rangle \\
\vdots \\
\langle a_M, x \rangle
\end{bmatrix} = A \cdot x
\]

1-bit matrix-vector product (MVP)

- Single-cycle operation
- Binarized neural networks [1]
- mmWave/THz equalization

The PPAC architecture

- 2D array of latch-based bit-cells
- Each of the M rows stores an N-bit word and has a row ALU
- Multiple rows are grouped in a bank

- Bit-cell with two operators
 - XNOR/AND
- All bit-cells on the same column share input and control signals
- A row is divided into subrows with local pop counts for scalability

A population count (pop count for short) corresponds to counting how many ones are there in a set of 1-bit numbers.
• Adds local pop counts to compute the row population count r_m

• Two accumulators:
 • First one for multi-bit vectors; includes offsets to correctly interpret r_m
 • Second for multi-bit matrixes

• A programmable threshold δ_m is subtracted from the second’s accumulator output to obtain y_m
 • Can be used as a comparator for declaring exact/similarity matches

• Pipeline stage after row population count to increase throughput
Operating MVPs in different number formats

• Key for building standard (multi-bit) unsigned and 2’s complement signed arithmetic, and other operations!
Executing an MVP with a multi-bit vector

- Assume \(\mathbf{A} \) has 1-bit entries, while \(\mathbf{x} \) has \(L \)-bit entries
- Bit-serial execution in \(L \) clock cycles
 - Operate MSBs of \(\mathbf{x} \) first (\(\mathbf{x}_L \)), LSBs last (\(\mathbf{x}_1 \))
 - Result of \(\mathbf{A}\mathbf{x}_L \) can be negated for 2’s complement arithmetic

\[
\mathbf{x} = \sum_{\ell=1}^{L} 2^{\ell-1} \mathbf{x}_\ell
\]

\[
\mathbf{A}\mathbf{x} = \sum_{\ell=1}^{L} 2^{\ell-1} \mathbf{A}\mathbf{x}_\ell
\]
Executing an MVP with a multi-bit vector

- Assume A has 1-bit entries, while x has L-bit entries
- Bit-serial execution in L clock cycles
 - Operate MSBs of x first (x_L), LSBs last (x_1)
 - Result of Ax_L can be negated for 2’s complement arithmetic

$$x = \sum_{\ell=1}^{L} 2^{\ell-1} x_\ell$$

$$Ax = \sum_{\ell=1}^{L} 2^{\ell-1} Ax_\ell$$
Executing an MVP with a multi-bit matrix

- Assume \mathbf{A} has K-bit entries and \mathbf{x} has L-bit entries
- Bit-serial execution in KL clock cycles
 - Same idea as multi-bit vectors, but memory cannot be changed fast enough [1]
 - Operate MSBs of \mathbf{A} first ($\mathbf{A}_K \mathbf{x}$), LSBs last ($\mathbf{A}_1 \mathbf{x}$)
 - Result of $\mathbf{A}_k \mathbf{x}$ can be negated for 2’s complement arithmetic

Executing an MVP with a multi-bit matrix

- Assume A has K-bit entries and x has L-bit entries
- Bit-serial execution in KL clock cycles
 - Same idea as multi-bit vectors, but memory cannot be changed fast enough [1]
 - Operate MSBs of A first ($A_K x$), LSBs last ($A_1 x$)
 - Result of $A_k x$ can be negated for 2’s complement arithmetic

PPAC does MVPs in different number formats

L-bit number formats supported by PPAC

<table>
<thead>
<tr>
<th>Name</th>
<th>uint</th>
<th>int</th>
<th>oddint</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO level</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>HI level</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Signed?</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

- Min. value: 0, -2^{L-1}, $-2^L + 1$
- Max. value: $2^L - 1$, $2^{L-1} - 1$, $2^L - 1$

E.g., $L = 2$: {0,1,2,3} {-2,-1,0,1} {-3,-1,1,3}

\[x = \sum_{\ell=1}^{L} 2^{\ell-1}x_\ell \]

- Neural network inference using low-precision int/uint numbers
- Hadamard transform using a 1-bit oddint matrix and a multi-bit int vector
- Signal processing, imaging and communications applications

For a matrix with K-bit entries and a vector with L-bit entries, an MVP is computed in KL cycles.
MVPs in GF(2)

- Galois Field of Two Elements, GF(2):
 - \times: AND
 - $+_{\text{mod-2}}$:
- Mod-2 $+$ is the LSB of y_m

Cannot implement reliably in analog

GF(2) arithmetic
- Single-cycle operation
- Forward-error correction
- Decoding
 - LDPC codes
 - Polar codes
- Cryptography
 - Secure hashing
 - AES S-box computation
Computing Boolean functions with PPAC

- Sum of min-terms
 - Column → Boolean variable (complement in different column)
 - Row → Min-term
 - Bank → Logic function
- $A_{m,n} = 1$ if mth minterm contains nth variable
- PPAC can compute Boolean functions with two AND/OR/MAJ levels

![Logic function computation]
- Single-cycle operation
- Look-up table
- Programmable Logic Array (PLA)

$$Y = A \bullet B + C$$
Implementing PPAC

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>N</th>
<th>L</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Words M</td>
<td>16</td>
<td>16</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>Word-length N</td>
<td>16</td>
<td>256</td>
<td>16</td>
<td>256</td>
</tr>
<tr>
<td>Area [μm^2]</td>
<td>14 161</td>
<td>72 590</td>
<td>185 283</td>
<td>783 240</td>
</tr>
<tr>
<td>Density [%]</td>
<td>75.77</td>
<td>70.45</td>
<td>75.52</td>
<td>72.13</td>
</tr>
<tr>
<td>Cell area [kGE]</td>
<td>17</td>
<td>81</td>
<td>213</td>
<td>897</td>
</tr>
<tr>
<td>Max. clock freq. [GHz]</td>
<td>1.116</td>
<td>0.979</td>
<td>0.824</td>
<td>0.703</td>
</tr>
<tr>
<td>Power (@0.9V,25°C) [mW]</td>
<td>6.64</td>
<td>45.60</td>
<td>78.65</td>
<td>381.43</td>
</tr>
<tr>
<td>Peak throughput [TOP/s]</td>
<td>0.55</td>
<td>8.01</td>
<td>6.54</td>
<td>91.99</td>
</tr>
<tr>
<td>Energy-eff. [fJ/OP]</td>
<td>12.00</td>
<td>5.69</td>
<td>12.03</td>
<td>4.15</td>
</tr>
</tbody>
</table>

- All-digital CMOS design
 - RTL design: Parameterizable and portable
 - Automated CAD tool implementation
 - Robust to process variations and easy to test

One OP is either a 1-bit multiplication or a 1-bit addition
Comparison with existing accelerators

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PPAC</td>
<td>yes</td>
<td>no</td>
<td>layout</td>
<td>28</td>
<td>0.9</td>
<td>0.78</td>
<td>91 994</td>
<td>184</td>
<td>91 994</td>
<td>184</td>
</tr>
<tr>
<td>CIMA [1]</td>
<td>yes</td>
<td>yes</td>
<td>silicon</td>
<td>65</td>
<td>1.2</td>
<td>8.56</td>
<td>4 720</td>
<td>152</td>
<td>10 957</td>
<td>1 456</td>
</tr>
<tr>
<td>Bankman et al. [2]</td>
<td>no</td>
<td>yes</td>
<td>silicon</td>
<td>28</td>
<td>0.8</td>
<td>5.95</td>
<td>-</td>
<td>532</td>
<td>-</td>
<td>420</td>
</tr>
<tr>
<td>Brein [3]</td>
<td>yes</td>
<td>no</td>
<td>silicon</td>
<td>65</td>
<td>1.0</td>
<td>3.9</td>
<td>1.38</td>
<td>2.3</td>
<td>3.2</td>
<td>15</td>
</tr>
<tr>
<td>UNPU [4]</td>
<td>no</td>
<td>no</td>
<td>silicon</td>
<td>65</td>
<td>1.1</td>
<td>16</td>
<td>7 372</td>
<td>46.7</td>
<td>17 114</td>
<td>376</td>
</tr>
<tr>
<td>XNE [5]</td>
<td>no</td>
<td>no</td>
<td>layout</td>
<td>22</td>
<td>0.8</td>
<td>0.016</td>
<td>108</td>
<td>112</td>
<td>84.7</td>
<td>54.6</td>
</tr>
</tbody>
</table>

- Energy-efficiency 7.9x and 2.3x lower than mixed-signal designs in [1] and [2]
- PPAC can compute a 4-bit 256-dim. inner product in **16 clock cycles**; Neural Cache [6] requires at least **98 clock cycles**

PPAC: A versatile in-memory accelerator

- Massively-parallel engine for matrix-vector-product-like operations
 - Hamming similarity
 - Matrix-vector product
 - 1-bit or multi-bit
 - $\{\text{LO,HI}\} \rightarrow \{-1,+1\}$ or $\{\text{LO,HI}\} \rightarrow \{0,+1\}$
 - GF(2)
 - Boolean function computation
- Memory and data-path seamlessly integrated
 - High throughput, and high energy-efficiency:
 A 28nm CMOS 256x256 PPAC achieves 92 TOP/s @ 184 TOP/s/W
- Competitive performance with high flexibility

For more information, please visit vip.ece.cornell.edu
Exploiting Hamming similarities

<table>
<thead>
<tr>
<th>a</th>
<th>x</th>
<th>a XNOR x</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI</td>
<td>HI</td>
<td>HI</td>
</tr>
<tr>
<td>HI</td>
<td>LO</td>
<td>LO</td>
</tr>
<tr>
<td>LO</td>
<td>HI</td>
<td>LO</td>
</tr>
<tr>
<td>LO</td>
<td>LO</td>
<td>HI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>x</th>
<th>a • x</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1</td>
<td>+1</td>
<td>+1</td>
</tr>
<tr>
<td>+1</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>+1</td>
</tr>
</tbody>
</table>

\[
\langle a_m, x \rangle = \sum_{n=1}^{N} a_{m,n} x_n \\
\langle a_m, x \rangle = -N + 2\overline{h}(a_m, x)
\]

Stores binary-valued matrix entries \(a_{m,n} \)

Stores binary-valued vector element \(x_n \)

\[a \cdot x = \begin{bmatrix} \langle a_1, x \rangle \\ \vdots \\ \langle a_M, x \rangle \end{bmatrix} = A \cdot x \]

1-bit matrix-vector product (MVP)

- Single-cycle operation
- Binarized neural networks [1]
- mmWave/THz equalization

Operating MVPs in different number formats

- Key for building standard (multi-bit) unsigned and 2’s complement signed arithmetic, and other operations!

<table>
<thead>
<tr>
<th>a</th>
<th>x</th>
<th>a AND x</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI</td>
<td>HI</td>
<td>HI</td>
</tr>
<tr>
<td>HI</td>
<td>LO</td>
<td>LO</td>
</tr>
<tr>
<td>LO</td>
<td>HI</td>
<td>LO</td>
</tr>
<tr>
<td>LO</td>
<td>LO</td>
<td>LO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>x</th>
<th>a (\cdot) x</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(\text{addr}\), \(\text{wrEn}\), \(\text{clk}\), \(x_1\), \(\ldots\), \(x_N\), \(y_m\), \(\delta_m\), \(\text{row ALU}\)
Operating across different number formats

- So far, we have operated matrix-vector-products where both matrix and vector have \(\{ \pm 1 \} \) or \(\{0,1\} \) entries
- Operations between different number representations are possible too
 - For example, if the matrix has \(\{ \pm 1 \} \) entries, but the vector has \(\{0,1\} \) entries, then:
 \[
 \langle \mathbf{a}_m, \mathbf{x} \rangle = \bar{h}(\mathbf{a}_m, \mathbf{x}) + \bar{h}(\mathbf{a}_m, 1) - N
 \]
 - \(\bar{h}(\mathbf{a}_m, 1) \) is stored in the row ALU and only calculated if the matrix \(\mathbf{A} \) changes
Operating across different number formats

- So far, we have operated matrix-vector-products where both matrix and vector have \{\pm 1\} or \{0,1\} entries
- Operations between different number representations are possible too
 - For example, if the matrix has \{\pm 1\} entries, but the vector has \{0,1\} entries, then:
 \[
 \langle a_m, x \rangle = h(a_m, x) + h(a_m, 1) - N
 \]
 - \(h(a_m, 1)\) is stored in the row ALU and only calculated if the matrix \(A\) changes...
Computing Boolean functions with PPAC

- Sum of min-terms
 - Column → Boolean variable (complement in different column)
 - Row → Min-term
 - Bank → Logic function
- \(A_{m,n} = 1 \) if \(m \)th minterm contains \(n \)th variable
- PPAC can compute Boolean functions with two AND/OR/MAJ levels

\[
A_{m,n} = 1 \text{ if } m \text{th minterm contains } n \text{th variable}
\]

- Logic function computation
 - Single-cycle operation
 - Look-up table
 - Programmable Logic Array (PLA)

- PPAC can compute Boolean functions with two AND/OR/MAJ levels