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B Motivation: The network function virtualization (NFV) technology can be used to
improve scalability and increase resources utilization.

B Problem: When we apply NFV to mobile core networks (4G or 5G) in the
straightforward, the scaling is inefficient (low resource utilization) even though the
entities can scale out or in according to the current load.

B Main Idea and goal: To refactor mobile core networks. Phase 1: To split the
decomposable entities into smaller network functions to increase resource
utilization. Phase 2: To merge selected network functions to shorten control signaling
delay.

B Main Contribution: We design two quantitative indicators to evaluate the impacts of
merging two consecutive functions in the generated strings. The problem to select
the network functions to be merged is reducible to a string matching problem.
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A Virtual Image Accelerator for Graph Cuts Inference on FPGA

Tiangi Gao, Rob A Rutenbar

Graph Cuts Inference via Push Relabel Virtual-image Architecture
Push(v, w).
Alsglicvab‘ﬁ)ity: v is active, r(v, w) > O and d(v) = d{w) + 1. * Memory Virtualization
Action: Send 8 = min(e(v), (v, w)) units of flow from v to w A .

S, w) < f(¥, w) + 83 f(w, v) < fOw, v) — & * Shadow Edge Processors for Flow between Virtual Tiles

e(v) «— e(v) — &; e(w) «— e(w) + é. . . . . .
Relabel(v). * Properly Mapping Virtual Tiles onto the Physical Tile
Applicability: vis active and Vw € V, r(v, w) > 0 = d(v) =< d(w).
Action: d(v) «—— min{d(w) + 1 | (v, w) € E}. North Virtual Tile
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* Design a physical tile of pixel-processors to execute Push Relabel in parallel
* Design a Virtual-Image system for large images by dividing it into virtual tiles

Single Tile
Checkerboard Scheduling
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Implement 2304 pixel-processors
Placement
* Adjust the weight-height

ratio to fit on the FPGA
Routing
* Use a global distribution tree

Benchmark images (first row) used in our experiments with their results (second row).
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Implications for Hardware Acceleration of Malware Detection
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L A metric to differentiate malwares from

benign applications (DoD) 0 Performance Comparison

False True F- AUC AUC
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GPUs Pipeline Latency Analysis NM
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O Motivation: 9 EC—)% Alamos

= Graphic Processor Units (GPUs) is now an integral component in any HPC system. NATIONAL LABORATORY

EST.1943

= Qver the last decade, Nvidia has introduced seven different generations/architecture. Each has its own microarchitecture and
hardware characteristics. However, the percentage of undisclosed characteristics beyond what vendors provides is small.

U Goals:

1. Demystify the latency of different instructions executing in the pipeline and different memory units found in various NVIDIA
GPUs.

2. Show the effect of high level optimizations found in CUDA (nvcc) compiler on various on the execution of different instructions.
U Methodology:

U Results:
Parallel thread execution (PTX) is used to perform the analysis. To * We run the evaluation on seven different high-end GPUs
determine each operation’s latency, we read the clock register from five different generations.
before and after the execution of the instruction. * The results show that the instructions’ overhead latencies

have mostly decreased from Kepler to Turing.
O Theresults arein ° We believe that these results should help architects and

------------ poster # 93 and in programmers optimize both the hardware and the software.
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Context-Aware Number Generator for Deterministic Bit-stream Computing

Sina Asadi and M. Hassan Najafi

° Stoc h a Stic CO m p uti ng Multiplication Using Conventional Clock Division Technique

2/4 110011001100 1100
B 1100 1100 0000 1000 4/

* Processes data based on bit-streams
* Low-cost, but low accuracy, long latency, and high energy consumption

2/4 111111110000 0000

b Deterministic TeChniq ues Multiplication Using Proposed Clock Division Technique
* Introduced recently for completely accurate computation using 2/4 = 1/2 2010 1000 4,
stochastic logic 2/4 = 1/2 100 4
* Clock Division, Rotation, Relatively Prime, and Sobol sequences
* Low-cost and high accuracy, but long latency, high energy consumption Context-Aware Architecture
. Input #1 —» I
* Proposed Context-Aware Design ’ T
. . CLK Full
* Determines the minimum bit-width to precisely represent each input — spU anc
| Input #2 — BTB #2 — | (STOCHASTIC Output | (Bitstream
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* Includes a proposed small control unit and a redesigned architecture N N
* Low-cost, high accuracy, faster, and lower energy consumption Ut~
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CLK Stop signal:

e Evaluation
* Significant improvement in the performance and energy consumption

* Negligible hardware cost overhead N vERSITY -
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Smar t Rabbit : Yuan Ze University

Wenpei Zheng

A Wearable Device As An Intelligent Pacer Sheng-Yang Chit

Jui-Chien Hsieh

for Marathon Runners Chaochang Chiu
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