LP-BNN: Ultra-low-Latency BNN Inference with Layer Parallelism

Tong Geng^{1, 2}, <u>Tianqi Wang¹</u>, Chunshu Wu¹, Chen Yang¹, Shuaiwen Leon Song² Ang Li², Martin Herbordt¹

> ¹Boston University ²Pacific Northwest National Laboratory

CNN: most popular algorithm in ML

• Widely used in computer vision such as object classification, detection and recognition

Birth of BNN

- Limitations of CNN
 - High computation + memory intensity
 - Long Latency
- 32-bit floating-point -> 8-bit fixed-point -> binary
 - Computation and Memory access are not intensive anymore
 - Potentially, much Lower Latency
 - Relatively lower accuracy than CNN, however, becoming better

DNN: BNN vs CNN

✓ Easier Computation: floating-point-multiply-add (FMA) operations → single-bit XNOR/POPCOUNT.

✓ Less Storage: floating-point parameters and activations → single-bit

✓ Energy Efficient: ideal for edge device

"Accelerating Neural Networks with Binary Arithmetic," https://ai.intel.com/accelerating-neural-networks-binary-arithmetic.

Inference of BNN on different platforms

- Utilization to accelerate the inference of AlexNet
 - batch size of 1:
 - **× GPU:** ~ 1%. **CPU:** ~ 6%.
 - batch size of 10:
 - × GPU: ~ 7%. CPU: ~ 10%.

✓ **FPGA:** >60%: Millions of one-bit ALUs on a single device.

Eriko Nurvitadhi, David Sheffield, Jaewoong Sim, Asit Mishra, Ganesh Venkatesh, and Debbie Marr. 2016. Accelerating binarized neural networks: comparison of FPGA, CPU, GPU, and ASIC. In Field-Programmable Technology (FPT), 2016 International Conference on. IEEE, 77–84.

- Challenges to make truly low-latency inference using FPGA
- 1.The critical Normalization Layer (NL) uses full-precision floating point (i.e., 2 FP MUL/DIV + 3 FP ADD/SUB).
- 2.Existing works process layers sequentially. Hence, their latencies are accumulated with no overlapping.
- 3.Optimal designs for all layers need to be simultaneously configured on FPGA with no reconfiguration.

- Challenges to make truly low-latency inference using FPGA
- 1.The critical Normalization Layer (NL) uses full-precision floating point (i.e., 2 FP MUL/DIV + 3 FP ADD/SUB).
- 2.Existing works process layers sequentially. Hence, their latencies are accumulated with no overlapping.
- 3.Optimal designs for all layers need to be simultaneously configured on FPGA with no reconfiguration.

Intra-layer Fusion

- Addressing the 1st challenge: Intra-layer fusion
- **3-to-1 fusion:** ACT, NL and BL are fused to a Comparison layer.
- **Simplified Computation:** 2 Comparisons from ACT and BL and 5 floating-point operations from NL become an integer- comparison.
- Less Storage: 4 floating-point variables in NL become 1 integer.

Intra-layer Fusion for Networks with Shortcuts

• ResNet

- Challenges to make truly low-latency inference using FPGA
- 1.The critical Normalization Layer (NL) uses full-precision floating point (i.e., 2 FP MUL/DIV + 3 FP ADD/SUB).
- 2.Existing works process layers sequentially. Hence, their latencies are accumulated with no overlapping.
- 3.Optimal designs for all layers need to be simultaneously configured on FPGA with no reconfiguration.

Inter-layer Fusion

- Addressing the 2nd challenge: inter-layer fusion
- Fine-grained pipelining to fuse CONV & 1st FC layers.
- An image is processed based on the data dependency.
- Layers are processed in parallel → overlapped latencies.

- Challenges to make truly low-latency inference using FPGA
- 1.The critical Normalization Layer (NL) uses full-precision floating point (i.e., 2 FP MUL/DIV + 3 FP ADD/SUB).
- 2.Existing works process layers sequentially. Hence, their latencies are accumulated with no overlapping.
- 3.Optimal designs for all layers need to be simultaneously configured on FPGA with no reconfiguration.

Workload Balancing

• Each Layer: NIC*NOC*K*K

- NIC=Num of Input Channel
- NOC=Num of Output Channel
- K=Kernel size
- Terms: PIC, POC, SIC, SOC
 - PIC=Parallelism of Input Channel
 - POC=Parallelism of Output Channel
 - SIC=Sequential of Input Channel
 - SOC=Sequential of Output Channel

1 for ho in Image.Height do 2 for wo in Image.width do 3 for scin in SIC do 4 for scout in SOC do	Sequential					
5 for pcout in POC do 6 for pcin in PIC do 7 for kh in kernel.height do	Parallel					
8for kw in kernel.width do9out.channel[scout*pcout+pcout][ro][co] +=10in.channel[pcin*scin+pcin][ho+kh][wo+kw] *11weight[scout*pcout+pcout][pcin*scin+pcin][kh][kw]						

• Match Data Production and Consumption Rates of adjacent layers by adjusting PIC, POC, SIC and SOC

Parameterized Architecture

- Addressing the 3rd challenge: decent architecture design
- The architecture is flexible enough to support load balancing.
- All layers are fully configured on FPGA using model parallelism.

Evaluation: Latency Reduction from Intra-layer Fusion

Evaluation: Single Layer Latency VS Whole Latency

Evaluation: Hardware Resource Saving from Workload Balancing

TABLE I

RESOURCE USAGE OF LUTS, FFS, BRAMS, AND DSPS FOR VGG INFERENCE WITH/WITHOUT WORKLOAD BALANCING (SAME LATENCY)

LUT	FF	BRAM	DSP					
With Workload Balancing								
509K/663K	K/663K 513K/1327K		1728/5520					
(76.8%)	(38.7%)	(20.6%)	(31.3%)					
Without Workload Balancing								
13401K/663K	8553K/1327K	459951/2160	1728/5520					
(2020%)	(645%)	(10647%)	(31.3%)					

Evaluation: BNN Inference Latency using LP-BNN

TABLE II

LATENCY, PERFORMANCE, ENERGY EFFICIENCY COMPARISON USING DIFFERENT TEMPLATES, GPUS, FPGAS, CPUS TO EXECUTE INFERENCE OF 4 NETWORKS: CIFAR-10 VGG-LIKE [17], IMAGENET ALEXNET [18], VGGNET-16 [19] AND RESNET-18 [22]

	CPU			GPU				
Platform	Xeon E5-2	2640 [7]	Phi 7210 [12]	i7-7700 [12]	Tesla K40 [7]	V100 (self-in	nplemented)	GTX 1080 [12]
Frequency	2.4G	Hz	1.3GHz	3.6GHz	745MHz	1.37GHz		1.61GHz
Dataset	Cifar	ImageNet			ImageNet	Cifar	Ju	ageNet
Network	VGG-Like	AlexNet	VGG-16		AlexNet VGG-Like AlexNet VGG-16			VGG-16
Latency	1.36s	10.8s	11.8ms	16.1ms	1.26s	994µs	2.23ms	12.9ms
Performance (Img/s)	0.74	0.09	85	62	0.79	1006	448	78
Energy (Img/KJ)	7.79	0.95	395	954	3.36	5543	2475	433
Accuracy (%)	86.31	66.8	76.8	76.8	66.8	89.9	71.2	76.8
	FPGA ASIC			FPGA				
Platform	Stratix	V[7] VCU108 [11]		UMC 65-nm [22]	This work: KCU1500			
Frequency	150MHz 200MHz			450MHz	200MHz			
Dataset	Cifar		ImageNe	t	Cifar		ImageNet	
Network	VGG-Like	AlexNet	AlexNet	ResNet-18	VGG-Like	AlexNet	VGG-16	ResNet-18
Latency	130µs	1.16ms	1.92ms	8ms	8.2µs	21.5µs	335µs	67.8µs
Performance (Img/s)	7692	862	521	125	1.2E5	4.7E4	2817	1.47E4
Energy (Img/KJ)	2.9E5	3.3E4	2.7E4	2.9E3	3.6E6	1.4E6	8.3E4 /	3.7E5
Accuracy (%)	86.31	66.8	N/A	N/A	88.5	72.7	74.3	65.6

