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CNN: most popular algorithm in ML

Widely used in computer vision such as object classification, detection and recognition
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Birth of BNN

= Limitations of CNN
* High computation + memory intensity
= Long Latency

= 32-bit floating-point -> 8-bit fixed-point -> binary
= Computation and Memory access are not intensive anymore
= Potentially, much Lower Latency
= Relatively lower accuracy than CNN, however, becoming better
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[ ]
DNN: BNN vs CNN

v’ Easier Computation: floating-point-multiply-add (FMA) operations =» single-bit XNOR/POPCOUNT.
v’ Less Storage: floating-point parameters and activations =» single-bit

v’ Energy Efficient: ideal for edge device
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“Accelerating Neural Networks with Binary Arithmetic,” https://ai.intel.com/accelerating-neural-networks-binary-arithmetic.
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Inference of BNN on different platforms

 Utilization to accelerate the inference of AlexNet
* batch size of 1:
x GPU: ~ 1%. CPU: ~ 6%.
* batch size of 10:
x GPU: ~ 7%. CPU: ~ 10%.
v'FPGA: >60%: Millions of one-bit ALUs on a single device.

Eriko Nurvitadhi, David Sheffield, Jaewoong Sim, Asit Mishra, Ganesh Venkatesh, and Debbie Marr. 2016. Accelerating binarized neural networks: comparison of
FPGA, CPU, GPU, and ASIC. In Field-Programmable Technology (FPT), 2016 International Conference on. IEEE, 77-84.
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Challenges

* Challenges to make truly low-latency inference using
FPGA

1.The critical Normalization Layer (NL) uses full-precision
floating point (i.e., 2 FP MUL/DIV + 3 FP ADD/SUB).

2.Existing works process layers sequentially. Hence, their
latencies are accumulated with no overlapping.

3.0ptimal designs for all layers need to be simultaneously
configured on FPGA with no reconfiguration.
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Intra-layer Fusion

* Addressing the 15t challenge: Intra-layer fusion

e 3-to-1 fusion: ACT, NL and BL are fused to a Comparison layer.

» Simplified Computation: 2 Comparisons from ACT and BL and 5 floating-
point operations from NL become an integer- comparison.

* Less Storage: 4 floating-point variables in NL become 1 integer.

5 Floating point operations and 4 FP variables
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Intra-layer Fusion for Networks with Shortcuts

* ResNet
(A) Original ResNet l "
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Inter-layer Fusion

Addressing the 2"d challenge: inter-layer fusion

Fine-grained pipelining to fuse CONV & 1%t FC layers.

An image is processed based on the data dependency.

* Layers are processed in parallel = overlapped latencies. e
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Workload Balancing

e Each Layer: NIC*NOC*K*K
* NIC=Num of Input Channel
* NOC=Num of Output Channel

e K=Kernel size L jfor ho in Image.Height do Sequential !
2, for wo in Image.width do I
° . 3, for scinin SIC do I
Terms: PIC, POC, SIC, SOC Y [
— ; or pcout in o
* PIC=Parallelism of Input Channel . for pcin in PIC do Parallel !
— : 71 for kh in kernel.height do

* POC=Parallelism of Output Channel ¢ Ak s e e !

— i 9] out.channel[scout+pcout+pcout][ro][co] +=
* SIC Sequentlal of lnPUt Channel 10} in.channel[pcin*scin+pcin][ho+kh][wo+kw] * ,
« SOC=Sequential of Output Channel !'L _ _ _ _ Weightiscout-pcout+pcout][pein-scin+pein]khikw] _

* Match Data Production and Consumption Rates of adjacent layers by
adjusting PIC, POC, SIC and SOC
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Parameterized Architecture

« Addressing the 3" challenge: decent architecture design
* The architecture is flexible enough to support load balancing.

» All layers are fully configured on FPGA using model parallelism.
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Evaluation: Latency Reduction from Intra-layer Fusion
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Evaluation: Single Layer Latency VS Whole Latency
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Evaluation: Hardware Resource Saving from Workload Balancing

TABLE 1
RESOURCE USAGE OF LUTS, FFS, BRAMS, AND DSPS FOR VGG
INFERENCE WITH/WITHOUT WORKLOAD BALANCING (SAME LATENCY)

LUT FF BRAM DSP
With Workload Balancing
509K/663K 513K/1327K 446/2160 1728/5520
(76.8%) (38.7%) (20.6%) (31.3%)
Without Workload Balancing
13401K/663K 8553K/1327K 459951/2160 | 1728/5520
(2020%) (645%) (10647%) (31.3%)
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Evaluation: BNN Inference Latency using LP-BNN

TABLE 11
LATENCY, PERFORMANCE, ENERGY EFFICIENCY COMPARISON USING DIFFERENT TEMPLATES, GPUS, FPGAS, CPUS TO EXECUTE INFERENCE OF 4
NETWORKS: CIFAR-10 VGG-LIKE [17], IMAGENET ALEXNET [18], VGGNET-16 [19] AND RESNET-18 [22]

CPU GPU
Platform Xeon E5-2640 [7] Phi 7210 [12] 17-7700 [12] Tesla K40 [7] | V100 (self-implemented) | GTX 1080 [12]
Frequency 2.4GHz 1.3GHz 3.6GHz T45MHz L~ 37GHz—" :
Dataset Cifar ImageNet ImageNet |/ Cifar \ | / ImageNet \
Network VGG-Like | AlexNet VGG-16 AlexNet VGG-Like AlexNet VGG-16
Latency 1.36s 10.8s 11.8ms 16.1ms 1.26s 994 s 2.23ms 12.9ms
Performance (Img/s) 0.74 0.09 85 62 0.79 1006 448 78
Energy (Img/KJ) 7.79 0.95 395 954 3.36 5543 /[\ 2475 \ 433
Accuracy (%) 86.31 66.8 76.8 76.8 66.8 N899 7 | NT12 7| N 7687
FPGA ASIC FPGA
Platform Stratix V [7] VCUIOS [11] UMC 65-nm [22] This work: KCUI1500
Frequency _—I150MHz 200MHz 450MHz 200MH
Dataset / Cifar \| N\ ImageNet N / Cifar \ |/ N/ ImageNet / \
Network / VGG-Like A AlexNet [\/ AlexNet \ / ResNet-18\ / VGG-Like \ AlexNet VGG-16 ResNet-18
Latency 130ps  []] 1.16ms 1.92ms [ 8ms | | 8.2us 21.5us 335us 67.8s
Performance (Img/s) 7692 862 521 | 125 | |\ 12E5 | 4.7E4 2817 1.47E4
Energy (Img/KJ) |\ 29ES \{ 3.3E4 2.7TE4 \ 29E3 / \  3.6E6 / 1466 /|\ 8.3E4 \ 37E5 /
Accuracy (%) \8631 /N 668 1 \ NA / \. NA / N 885 / [N\ 727 /[ \ 743 /| 6567
~__—
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