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LP-BNN: Ultra-low-Latency BNN Inference with Layer Parallelism

CNN: most popular algorithm in ML

▪ Widely used in computer vision such as object classification, detection and recognition
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Birth of BNN

▪ Limitations of CNN

▪ High computation + memory intensity 

▪ Long Latency

▪ 32-bit floating-point -> 8-bit fixed-point -> binary

▪ Computation and Memory access are not intensive anymore

▪ Potentially, much Lower Latency

▪ Relatively lower accuracy than CNN, however, becoming better
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Boston University Slideshow Title Goes Here

DNN: BNN vs CNN
✓ Easier Computation: floating-point-multiply-add (FMA) operations ➔ single-bit XNOR/POPCOUNT.

✓ Less Storage: floating-point parameters and activations ➔ single-bit 

✓ Energy Efficient: ideal for edge device

“Accelerating Neural Networks with Binary Arithmetic,” https://ai.intel.com/accelerating-neural-networks-binary-arithmetic.
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Inference of BNN on different platforms

• Utilization to accelerate the inference of AlexNet
• batch size of 1:

× GPU: ~ 1%. CPU: ~ 6%.

• batch size of 10:

× GPU: ~ 7%. CPU: ~ 10%.

✓FPGA: >60%: Millions of one-bit ALUs on a single device.

LP-BNN: Ultra-low-Latency BNN Inference with Layer Parallelism

Eriko Nurvitadhi, David Sheffield, Jaewoong Sim, Asit Mishra, Ganesh Venkatesh, and Debbie Marr. 2016. Accelerating binarized neural networks: comparison of 

FPGA, CPU, GPU, and ASIC. In Field-Programmable Technology (FPT), 2016 International Conference on. IEEE, 77–84.
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Challenges

• Challenges to make truly low-latency inference using
FPGA

1.The critical Normalization Layer (NL) uses full-precision
floating point (i.e., 2 FP MUL/DIV + 3 FP ADD/SUB).

2.Existing works process layers sequentially. Hence, their
latencies are accumulated with no overlapping.

3.Optimal designs for all layers need to be simultaneously
configured on FPGA with no reconfiguration.

LP-BNN: Ultra-low-Latency BNN Inference with Layer Parallelism
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Intra-layer Fusion

• Addressing the 1st challenge: Intra-layer fusion
• 3-to-1 fusion: ACT, NL and BL are fused to a Comparison layer.

• Simplified Computation: 2 Comparisons from ACT and BL and 5 floating-
point operations from NL become an integer- comparison.

• Less Storage: 4 floating-point variables in NL become 1 integer.

LP-BNN: Ultra-low-Latency BNN Inference with Layer Parallelism
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Intra-layer Fusion for Networks with Shortcuts

• ResNet

LP-BNN: Ultra-low-Latency BNN Inference with Layer Parallelism
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Inter-layer Fusion
• Addressing the 2nd challenge: inter-layer fusion

• Fine-grained pipelining to fuse CONV & 1st FC layers.

• An image is processed based on the data dependency.

• Layers are processed in parallel ➔ overlapped latencies.

LP-BNN: Ultra-low-Latency BNN Inference with Layer Parallelism
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Workload Balancing
• Each Layer: NIC*NOC*K*K

• NIC=Num of Input Channel

• NOC=Num of Output Channel

• K=Kernel size

• Terms: PIC, POC, SIC, SOC
• PIC=Parallelism of Input Channel

• POC=Parallelism of Output Channel

• SIC=Sequential of Input Channel 

• SOC=Sequential of Output Channel

• Match Data Production and Consumption Rates of adjacent layers by 
adjusting PIC, POC, SIC and SOC

LP-BNN: Ultra-low-Latency BNN Inference with Layer Parallelism
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Parameterized Architecture

• Addressing the 3rd challenge: decent architecture design

• The architecture is flexible enough to support load balancing.

• All layers are fully configured on FPGA using model parallelism. 

LP-BNN: Ultra-low-Latency BNN Inference with Layer Parallelism

PE: Processing Element
MAC: Multiply-Accumulate Unit
TB: Threshold Buffer
SWM: Shared Weight Memory
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Abbreviation:
VPB: Vertical Pooling Buffer
HPB: Horizontal Pooling Buffer
SIDSR: Shared Input Data Shift Registers

Parameters:
K: Filter Kernel Size
W: Width of the input feature map
P: Pooling Kernel Size
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Evaluation: Latency Reduction from Intra-layer Fusion

LP-BNN: Ultra-low-Latency BNN Inference with Layer Parallelism
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Evaluation: Single Layer Latency VS Whole Latency
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Evaluation: Hardware Resource Saving from Workload Balancing
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Evaluation: BNN Inference Latency using LP-BNN
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