Event-Based Re-configurable Hierarchical Processors for Smart Image Sensors

Pankaj Bhowmik Member IEEE, MD Jubaer Hossain Pantho, Christophe Bobda Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida

Presented by Sujan Kumar Saha

Graduate Student Department of ECE University of Florida ASAP-2019 07/19/2019, New York

Motivation and Challenges

- 1. Continuous Increase in image size
- 2. Sequential operation
- 3. High power consumption
- 4. Application specific image sensor

Number of Pixels Figure 2: Increase of execution time with the increase of pixel counts

Figure 1: Pixel Size Increase over the years in Digital Camera*

*Source: https://www.macworld.com/article/1156514/35yearsofdigitalcameras.html

Viable Solutions

- > Apply event-based processing instead of frame-based processing.
- Bringing the computational units close of the image sensor.
- Break sequential nature of image processing and introduce massive parallelism.
- > Bio-Inspired computing promises to reduce power consumption.
- > Hardware should be reconfigurable in ASIC paradigm.

Figure 3: Pixel Circuit with computational unit

Figure 4: Pixel-Parallel Focal Plane Image sensor where computational units are brought close to the image sensor*

*Source: Bhowmik, Pankaj et al. "Design of a Reconfigurable 3D Pixel-Parallel Neuromorphic Architecture for Smart Image Sensor." 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) (2018): 786-7868.

Why Event-Based Processing is inevitable?

Proposed Architecture

- 1. Pixel-Level Processing Layer
- 2. Region-Level Processing Layer
- 3. Knowledge Inference Processing Layer

RP-M

RP-2 RP-1

:

Flag

Tag

Tag

...

Flag

RP-M

En

Output

AM

Proc.

Data In

RP-2

En

AM

Proc.

Tag

RP-1

En

AM

Proc.

Tag Register

Tag

Flag

Hierarchical Processing

Pixel-Level Processing Layer

- 1. Activation Module: Predictive Coding in time
- 2. Processor: Reconfigurable to a set of Low-Level Image processing applications
 - > M1 and M2 module executes the common section of the applications
 - ➤ M0 provides the convolutional kernel to the M1
 - ➤ M3 executes the unique segments

PCT

Processor setting block sets the configuration

NW	N	NE	
W	Р	Е	
SW	S	SE	

Inputs to the PE works with pixel *P* at time *t*

NW	Ν	NE
W	P	Е
SW	S	SE

Region-Level Processing Layer

Attention Module (AM):

✓ Computes spatial saliency and activates the processor

Processor

- ✓ RP works on a larger region and provides region-level parallelism.
- Attention Module removes spatial redundancy.
- Region processors activates if there is an ROI.
- ✓ Arbiter sends global features to sequential processor from RP-1 to RP-M and only active RPs get the bus access.

Knowledge Inference Processing Layer

- ✓ The external embedded processor receives reduces data from an image after removing temporal and spatial saliency.
- ✓ The received data it pre-processed by low-level and mid-level image processing operations.
- ✓ Hence the remainder operation in the machine vision task is less time consuming and computationally inexpensive.

Result Analysis: Pixel Level

- Thirteen low-level image processing applications are runtime reconfigurable.
- Predictive-Coding in Time removes temporal redundancy and gives 84.01% power savings.
- The area and power overhead are in an acceptable range.
- The design achieves huge acceleration at the pixel level.

Table 1: Accurate prediction saves power from pixel level

processors	Prediction b	Without	
	Inaccurate	Accurate	AcM
Power Consumption (mW)	4.884	0.781	4.1892
Dynamic Power Savings (%)	~	84.01	14.22
Execution Time (ns)	12.5	1.25	11.25
Speed up	~	$10 \times$	1.11×

Table 2: Execution Time comparison for executing low-level Applications

	Execution Time (ET)				
Image Size	CPU	Embedded Processor	GPU	FPGA	Our Implem -mentation
160x70	2 ms	28.74 ms	5.47 us	2 us	12.5 ns
320x140	5 ms	115.59 ms	5.50 us	4 us	12.5 ns
640x480	21 ms	791.07 ms	5.53 us	8 us	12.5 ns

Result Analysis: Region Level

RP performs the following operation on an 8x8 (*scalable*) region

- Region growing for segmentation
- Corner detection
- Scale Invariant Feature Detection (SIFT) for object recognition

Table 3: Parameter Extraction of the modules In ASIC

Madula	Area	Power	Leakage	Delay
Module	(um2)	(mW)	(uW)	(ns)
Attention Module	142.84	0.127	2.81	80
Proc.(Corner)	13830.67	11.46	333	93.75
Proc.(SIFT)	13804.86	11.43	331	146.25
Proc.(Seg)	886.3	3.938	43	160

Table 4: Parameter Extraction of the modules In FPGA

Module	Flip-Flop	LUT	No of clo -ck cycles	Power (mW)
Attention Module	422	168	64	15
Proc.(Corner)	768	1349	75	47
Proc.(SIFT)	1180	2323	117	128
Proc.(Segmentation)	661	1060	128	28

Key Features

Runtime Reconfigurable for mid-level image processing applications Saves **96.91%** power by dynamically postponing execution Reduces data volume for sequential processor

Figure: Increase in resource utilization for different number of PRs in the customized processor local BUS

Summary

- □ We prototype inter-pixel processor for an image sensor with hierarchical processing.
- Pixel-level processors execute low-level image processing applications after removing temporal redundancy.
- Region-level processors execute mid-level image processing applications after removing spatial redundancy.
- □ The gradual degradation of data volume accelerates the remainder task in a machine vision task on the sequential processor.
- Biological vision system is emulated on those processors to reduce power and speedup the system.
- □ The processors are implemented on hardware (ASIC and FPGA) and they are runtime reconfigurable to ensure a flexible design after fabrication.

Thank You for Your Concentration

