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Motivation: Low Power Challenge at the Edge

* |oT and Edge devices require ultra low power solutions
* From big data in the cloud to the low power smart sensor

* Possible solution: to employ new design paradigms to overcome the
challenge.
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New Paradigm: Stochastic Computing (SC)

1 A re-emerging computing paradigm: introduced in 1969
(d Has gained attention recently due its low power and error tolerance
[ Logical computation on random bit streams
 Value: probability of obtaining a one versus a zero
¢ Unipolar [0, 1] positive
- Each bit has the probability X of being 1
+* Bipolar [-1, 1] positive, negative
- Each bit has the probability (X+1)/2 of being one
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Representation of Stochastic Numbers

e Digital 0,1,1,0,1,0,1,0,1,1 (6/10) 7= X xX
g \ 0,0,1,0,0,0,1,0,0,1 (3/10) 17722
1,0,1,1,0,0,1,0,0,1 (5/10)| AND
o 3/10 = 6/10 x 5/10
* Analog
 Encoding the value as the fraction of time the signal is high
2ns Ins Ins
1) QI [ L eno=o0s6
2ns Ins
In2 l 5/10=0.5
Ins 2ns
AND_OUT | ] | 3/10=0.3

* Bit-stream length grows exponentially with precision
 Redundant representation provides error tolerance
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Area, Computation Efficiency and Delay
SC: smaller area, longer computation latency,

and shorter critical path

Conventional
binary
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Application Context of SC

» Stochastic computing circuit performs cheap pre-processing; saves resources

Analog domain Stochastic domain Digital domain
| | | | | |

Physical N Stochastic > To digital
H Conversion

world >l Computing | Conversion processing unit
Sensor Circuit o
\ J To communication
| link

Low cost preprocessing between two domains

E SC Multiplication SC Addition SC Activation
E (AND/XNOR) (MUX/Adder) (FSM/Counter)

FSM SC OuUT

I SC-Neuron!
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Advantages and Weaknesses

* Advantages
J Simple hardware for complex operations
** Multiplication: AND (Unipolar), XNOR (Bipolar)
¢ Scaled Addition: MUX

* Main Weakness
 High accuracy < Long stochastic
streams

J Gracefully tolerate noise
** Redundant representation provides error
tolerance
+¢ Stochastic: 0010000011000000 (3/16) => 4/16
¢ Binary: 0.0011 =0.1875=>0.1011 =0.68

J Long computation time =2 high
energy consumption

** Much slower

¢ More energy consumption

than conventional binary
] Skew tolerance design
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Previous Works

* Bernstein Polynomial

Q A function f(x) € [0, 1] given x € [0, 1] can be implemented using Bernstein
polynomial method.

n. - .
The target function: f(x) = YiL, BiBin(x) where B; ,(x) = (l.)x‘(l — x)t
O Increasing hardware complexity as x;s and z; s required SNGs.

X1 0,0,0,1,1,0,1,1 (4/8)
x2 0,1,1,1,0,0,1,0 (4/8) J/_;_\ ,

x3 1,1,0,1,1,0,0,0 (4f8) x

2 5 3 6
12,132,021 ) = 2Boa(x) £ 2By a(x) £ =By a(x) + = Baalx
Z0 0,0,0,1,0,1,0,0(2f8)=\¢\ f1(x) 8 03(x) 8 1,3(x) 8 23 (%) g B33(%)

21 0,1,0,1,0,1,1,1 (5/8)
22 0,1 ,1,05 1 503090 (3“';8) -
23 1,1,1;031515031 (61{8)_
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Previous Works

* Finite-state-machine based approach

1 The method was proposed by Brown and Card using to implement tangent hyperbolic and
exponential functions

O The linear FSM topology cannot be used to synthesize more sophisticated functions [1].
 Extra inputs to synthesize more sophisticated functions increase hardware complexity
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Previous Works

* Maclaurin based approach
1 Complex arithmetic functions were implemented by using Horner’s rule for
Maclaurin expansions and factorization is considered in some arithmetic functions.

[ This approach is suited for low power application [1]
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- AND gate is used to implement SC multiplication.
- NOT gate is used to implement (1-x)
- One bit delay and AND gate is used to implement x*

, . . o o _ Embedded.Systems@UCC
] M C C I [1] K. Parhi and Y. Liu, "Computing Arithmetic Functions Using Stochastic Logic by Series
i_r!ra . ‘ Expansion," IEEE Trans. on Emerging Topics in Computing, pp. 1-13, Oct. 2016. e »




Proposed Approach

* Piecewise linear approximation
O A complex arithmetic f(x) is approximated by segments.

U The domain of x € (a, ) could be divided into s equal segments.

Q In the it" segment, the function f(x) can be
written as:

f~xax+b, ~B-a)<xs——(@-a)
i =0-s-—-1

Q The error in it" segment:
& = f(x) — (a;x + b;)

! f

:
X

.: | X
i Xi+1 ﬁ -
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Proposed Approach

* Lagrange interpolation approximation
 The optimized coefficients a;, b; in each segment can be found by using Lagrange

interpolation approximation using Chebyshev nodes.
f(x) = XizoLi(x)
l( ) f( l) H]—O,l;t] Xi—X;

A Fitting points on f(x) to find the optimal polynomial.

B ( [ 2n+ 1)m
R 21+ 2

),...,cn = cos(

 The shorter the approximation interval, the closer to linear the function
=> lower degree polynomial => decrease hardware complexity
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Hardware Architecture

* The Hardware Designs of f(x)= e™, cos(x)
 The function can be approximated as: f(x) ~ —aix'bi

-X
© \ T
9 b; a; <0
962 x 210 | 1005 x 2-10
849x 20 | 988 x 210 a;| < |b;]
- -10 -10 ] 4
748x 2 926 x 2 a; o
-661 x 210 859 x 2-10 —| € (0,1)
-582 x 219 773x 21 b; => Reduce accuracy
-517 x 210 723 x 2710 X 10/ 1 sneG
“453 x 2-10 682 x 2-10 input
2304 x 210 611 x 2-10
: e 3 MSBs 10 Xout
(JThe function can be re-written as — 1 >l cour 1o
a; . 10
f(x)zl_b_x’ i=0:7 L utA 4 sNG
[
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Hardware Architectures
* The Hardware Designs of f(x)= In(1 + x), tanh(x), sigmoid(x), sin(x)

d The function can be approximated as: f(x) = a;x + b;
In(1+x)

a; >0
al- bi

964 X 210 1x 210 la;| > |b;| x 9l we |
861 x 2-10 14 x 2-10 ) ) .. Input mal:
=80 x 210 3220 | Avoid using addition:
713 x 2-10 60 x 2-10 b: =1 — c: 3 MSBs s 10 Xout
655 X 2-10 88 x 2-10 g g ma ) e MECE
606 x 2-10 118 x 2-10 e T 1 NG
565 x 2-10 150 X 2-10

-10 -10
529 x 2 181 X 2 I e E Y

U The function can be re-written as:

xX)=1—-ci+ax=1—c¢(1—-=2x
f( l l l ci
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Hardware Architectures

 The Hardware Designs of f(x)= e ~%*
 The function can be approximated as: f(x) = a;x + b;

e—Zx
a; bi
1809x 2 | 1023x2v | a; € [—2,0]
21409 x 210 | 970 x 210 b; € [0,1]
21097 x 210 | 893 x 2-10 :
a2 o1 | 8005 o0 la;| > |b;| In first four values
-665 x 210 708 x 210 la;| < |b;| Insecond four values
518X 210 | 616 x 210
-403 x 2-10 530 x 210 XOR gate for
Sxedd Abexes = unipolar subtract
dConsidering first four values: \ P
a; a;
™ € [1,2] Cannot convert to SC => applying factorization: f(x) = 1 @ —x — —x
i
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Hardware Architectures

 The Hardware Designs of f(x)= e ~%*

dConsidering second four values:

f(x)= —ax+b; =1 —%x, i =4,5,6,7

l

MSB
X
1071 sne |

input

Xout
3 MSBs .
Counter 79—>
‘ f(x)
LUT-A lO;Lb SNG
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Simulation Results

* Accuracy

( The Monte Carlo simulation was used to evaluate Mean Absolute Error (MAE)

/
“** Improvement of 2.5 Function Proposed method | Horners rule FSM -based
times on average
comparing to sin(x) Order - 7 8 states
Maclaurin based Error 0.0013 0.0034 0.0025
Order - 7 8 states
. method In(1 + )
** Improvement of 8.5 Error 0.0026 0.0081 0.0186
times on average Order - 7 8 states
ing to FSM tanh(x)
comparing to Error 0.0012 0.0140 0.0351
based method , _ Order - 7 8 states
sigmoid(x)
Error 0.0043 0.0046 0.0198
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Simulation Results

dProposed hardware architectures were synthesized in 65 nm CMOS library

Function Proposed method | Honners rule FSM-based
Total Cell Area 607 763 1269
In(1 + x) Power (LW) 16.73 21.42 34.79
Delay (ns) 2.92 2.89 2.78
Total Cell Area 603 674 1270

tanh(x) Power (LW) 16.62 18.82 35.5213

Delay (ns) 2.97 2.89 2.71
Total Cell Area 600 758 1489
sigmoid(x) Power (LW) 16.542 21.15 41.23
Delay (ns) 2.86 2.79 3.09
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Conclusions

JWe proposed an approach to customize arithmetic functions based stochastic
computing in which the Mean Absolute Error is significantly improved comparing to
previous methods.

[ The experiment results show area and power consumption improvement over

previous works

L Future Work
*¢* Neural Networks
*¢* LDPC decoders
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