
Efficient Architectures and Implementation of
Arithmetic Functions Approximation Based Stochastic

Computing

Tieu-Khanh Luong1, Van-Tinh Nguyen2, Anh-Thai Nguyen3 and Emanuel

Popovici1,4

MCCI + Embedded.Systems @ University College Cork1, Nara Institute of
Science and Technology2, Le Quy Don Technical University3

ASAP 2019

Outline

❑ Introduction and Previous Works
❑ Proposed Approach
❑ Hardware Architectures
❑ Experimental Results
❑ Conclusion

Motivation: Low Power Challenge at the Edge
• IoT and Edge devices require ultra low power solutions

• From big data in the cloud to the low power smart sensor

• Possible solution: to employ new design paradigms to overcome the
challenge.

3

New Paradigm: Stochastic Computing (SC)

❑ A re-emerging computing paradigm: introduced in 1969

❑ Has gained attention recently due its low power and error tolerance

❑ Logical computation on random bit streams

❑ Value: probability of obtaining a one versus a zero
❖ Unipolar [0, 1] positive

- Each bit has the probability X of being 1

❖ Bipolar [-1, 1] positive, negative
- Each bit has the probability (X+1)/2 of being one

4

Representation of Stochastic Numbers
• Digital

• Analog
❑ Encoding the value as the fraction of time the signal is high

22/07/2019 5

Z = X1×X2

3/10 = 6/10 5/10

• Bit-stream length grows exponentially with precision
• Redundant representation provides error tolerance

Area, Computation Efficiency and Delay

22/07/2019 6

SC: smaller area, longer computation latency,

and shorter critical path

Critical path

Conventional
binary
multiplier

Stochastic
multiplier

Application Context of SC
• Stochastic computing circuit performs cheap pre-processing; saves resources

22/07/2019 7

Low cost preprocessing between two domains

Advantages and Weaknesses

8

• Advantages
❑ Simple hardware for complex operations
❖Multiplication: AND (Unipolar), XNOR (Bipolar)
❖ Scaled Addition: MUX

❑ Gracefully tolerate noise
❖ Redundant representation provides error

tolerance
❖ Stochastic: 0010000011000000 (3/16) => 4/16
❖ Binary: 0.0011 = 0.1875 => 0.1011 = 0.68

❑ Skew tolerance

• Main Weakness
❑ High accuracy Long stochastic

streams

❑ Long computation time ➔ high
energy consumption
❖Much slower
❖More energy consumption

than conventional binary
design

Previous Works

22/07/2019 9

• Bernstein Polynomial
❑ A function 𝑓 𝑥 ∈ [0, 1] given 𝑥 ∈ [0, 1] can be implemented using Bernstein
polynomial method.

The target function: 𝑓 𝑥 = σ𝑖=0
𝑛 𝑖𝐵𝑖,𝑛(𝑥) where 𝐵𝑖,𝑛 𝑥 = (

𝑛
𝑖
)𝑥𝑖(1 − 𝑥)𝑛−𝑖

❑ Increasing hardware complexity as 𝑥𝑖
′𝑠 𝑎𝑛𝑑 𝑧𝑖

′𝑠 required SNGs.

𝑓1 𝑥 =
2

8
𝐵0,3 𝑥 +

5

8
𝐵1,3 𝑥 +

3

8
𝐵2,3 𝑥 +

6

8
𝐵3,3(𝑥)

Previous Works

10

• Finite-state-machine based approach
❑ The method was proposed by Brown and Card using to implement tangent hyperbolic and

exponential functions
❑ The linear FSM topology cannot be used to synthesize more sophisticated functions [1].
❑ Extra inputs to synthesize more sophisticated functions increase hardware complexity

[1] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. Riedel, “The synthesis of complex arithmetic
computation on stochastic bit streams using sequential logic,” in Proceedings of the
International Conference on Computer-Aided Design, pp. 480–487, ACM, 2012

Previous Works

11

• Maclaurin based approach
❑ Complex arithmetic functions were implemented by using Horner’s rule for
Maclaurin expansions and factorization is considered in some arithmetic functions .

[1] K. Parhi and Y. Liu, "Computing Arithmetic Functions Using Stochastic Logic by Series
Expansion," IEEE Trans. on Emerging Topics in Computing, pp. 1-13, Oct. 2016.

𝑠𝑖𝑛 𝑥 ≈ 𝑥 −
𝑥3

3!
+
𝑥5

5!
−
𝑥7

7!

= 𝑥(1 −
𝑥2

6
(1 −

𝑥2

20
(1 −

𝑥2

42
)))

- AND gate is used to implement SC multiplication.
- NOT gate is used to implement (1-x)
- One bit delay and AND gate is used to implement 𝑥2

❑ This approach is suited for low power application [1]

Proposed Approach

12

• Piecewise linear approximation
❑ A complex arithmetic 𝑓 𝑥 is approximated by segments.

❑ The domain of 𝑥 ∈ (𝛼, 𝛽) could be divided into 𝑠 equal segments.

❑ In the 𝑖𝑡ℎ segment, the function f(x) can be
written as:

𝑓 𝑥 ≈ 𝑎𝑖𝑥 + 𝑏𝑖 ,
𝑖

𝑠
𝛽 − 𝛼 ≤ 𝑥 ≤

𝑖 + 1

𝑠
𝛽 − 𝛼

𝑖 = 0 → 𝑠 − 1

❑ The error in 𝑖𝑡ℎ segment:
𝜀𝑖 = 𝑓 𝑥 − (𝑎𝑖𝑥 + 𝑏𝑖)

Proposed Approach

13

• Lagrange interpolation approximation
❑ The optimized coefficients 𝑎𝑖 , 𝑏𝑖 in each segment can be found by using Lagrange

interpolation approximation using Chebyshev nodes.

❑ Fitting points on 𝑓 𝑥 to find the optimal polynomial.

𝑐0 = 𝑐𝑜𝑠
𝜋

2𝑛 + 2
,… , 𝑐𝑛 = 𝑐𝑜𝑠(

(2𝑛 + 1)𝜋

2𝑛 + 2
)

𝑓 𝑥 = σ𝑖=0
𝑛 𝐿𝑖(𝑥)

𝐿𝑖 𝑥 = 𝑓 𝑥𝑖 . ς𝑗=0,𝑖≠j
𝑛 𝑥−𝑥𝑖

𝑥𝑖−𝑥𝑗

❑ The shorter the approximation interval, the closer to linear the function
=> lower degree polynomial => decrease hardware complexity

Hardware Architecture

14

• The Hardware Designs of f(x)= 𝑒−𝑥 , 𝑐𝑜𝑠 𝑥

𝑓 𝑥 = 1 −
𝑎𝑖

𝑏𝑖
𝑥, 𝑖 = 0 ∶ 7

❑ The function can be approximated as:

𝑎𝑖 < 0
𝑎𝑖 < 𝑏𝑖
𝑎𝑖
𝑏𝑖

∈ (0, 1)

❑The function can be re-written as CounterCounter
10 Xout

f(x)

SNGSNG

LUT-ALUT-A SNGSNG

x

input

10

3 MSBs

10

𝑓 𝑥 ≈ −𝑎𝑖𝑥 + 𝑏𝑖

=> Reduce accuracy

𝑒−𝑥

𝑎𝑖 𝑏𝑖
-962 x 2-10 1005 x 2-10

-849 x 2-10 988 x 2-10

-748 x 2-10 926 x 2-10

-661 x 2-10 859 x 2-10

-582 x 2-10 773 x 2-10

-517 x 2-10 723 x 2-10

-453 x 2-10 682 x 2-10

-394 x 2-10 611 x 2-10

Hardware Architectures

15

• The Hardware Designs of f(x)= 𝑙𝑛(1 + 𝑥), 𝑡𝑎𝑛ℎ(𝑥), 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑥 , 𝑠𝑖𝑛(𝑥)

𝑓 𝑥 = 1 − 𝑐𝑖 + 𝑎𝑖𝑥 = 1 − 𝑐𝑖(1 −
𝑎𝑖

𝑐𝑖
𝑥)

𝑎𝑖 > 0
𝑎𝑖 > 𝑏𝑖

❑The function can be re-written as:

CounterCounter
10 Xout

f(x)

SNGSNG

LUT-ALUT-A

LUT-BLUT-B

SNGSNG

SNGSNG

x

input

10

3 MSBs

10

10

❑ The function can be approximated as:

Avoid using addition:
𝑏𝑖 = 1 − 𝑐𝑖

𝑓 𝑥 ≈ 𝑎𝑖𝑥 + 𝑏𝑖
𝑙𝑛 1 + 𝑥

𝑎𝑖 𝑏𝑖
964 x 2-10 1 x 2-10

861 x 2-10 14 x 2-10

780 x 2-10 34 x 2-10

713 x 2-10 60 x 2-10

655 x 2-10 88 x 2-10

606 x 2-10 118 x 2-10

565 x 2-10 150 x 2-10

529 x 2-10 181 x 2-10

Hardware Architectures

16

• The Hardware Designs of f(x)= 𝑒−2𝑥

𝑎𝑖
𝑏𝑖

∈ [1, 2]

𝑎𝑖 ∈ [−2, 0]
𝑏𝑖 ∈ [0,1]
𝑎𝑖 > 𝑏𝑖
𝑎𝑖 < 𝑏𝑖

In first four values

❑ The function can be approximated as: 𝑓 𝑥 ≈ 𝑎𝑖𝑥 + 𝑏𝑖

❑Considering first four values:

In second four values

Cannot convert to SC => applying factorization: 𝑓 𝑥 = 1 −
𝑎𝑖

2𝑏𝑖
𝑥 −

𝑎𝑖

2𝑏𝑖
𝑥

XOR gate for
unipolar subtract

𝑒−2𝑥

𝑎𝑖 𝑏𝑖
-1809 x 2-10 1023 x 2-10

-1409 x 2-10 970 x 2-10

-1097 x 2-10 893 x 2-10

-855 x 2-10 802 x 2-10

-665 x 2-10 708 x 2-10

-518 x 2-10 616 x 2-10

-403 x 2-10 530 x 2-10

-314 x 2-10 452 x 2-10

Hardware Architectures

22/07/2019 17

• The Hardware Designs of f(x)= 𝑒−2𝑥

❑Considering second four values:

𝑓 𝑥 = −𝑎𝑖𝑥 + 𝑏𝑖 = 1 −
𝑎𝑖

𝑏𝑖
𝑥, 𝑖 = 4,5,6,7

CounterCounter
10

Xout

f(x)

SNGSNG

LUT-ALUT-A SNGSNG

x

input

10

X1

X2

MUX

3 MSBs

MSB

10

Sel
DelayDelay

Simulation Results

18

• Accuracy

❑The Monte Carlo simulation was used to evaluate Mean Absolute Error (MAE)

❖ Improvement of 2.5
times on average
comparing to
Maclaurin based
method

❖ Improvement of 8.5
times on average
comparing to FSM
based method

Function Proposed method Horners rule FSM -based

sin x
Order - 7 8 states

Error 0.0013 0.0034 0.0025

ln 1 + 𝑥
Order - 7 8 states

Error 0.0026 0.0081 0.0186

tanh 𝑥
Order - 7 8 states

Error 0.0012 0.0140 0.0351

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑥
Order - 7 8 states

Error 0.0043 0.0046 0.0198

Simulation Results

19

❑Proposed hardware architectures were synthesized in 65 nm CMOS library

Function Proposed method Honners rule FSM-based

ln 1 + 𝑥

Total Cell Area 607 763 1269

Power (µW) 16.73 21.42 34.79

Delay (ns) 2.92 2.89 2.78

tanh 𝑥

Total Cell Area 603 674 1270

Power (µW) 16.62 18.82 35.5213

Delay (ns) 2.97 2.89 2.71

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑥

Total Cell Area 600 758 1489

Power (µW) 16.542 21.15 41.23

Delay (ns) 2.86 2.79 3.09

Conclusions

20

❑We proposed an approach to customize arithmetic functions based stochastic
computing in which the Mean Absolute Error is significantly improved comparing to
previous methods.
❑ The experiment results show area and power consumption improvement over
previous works

❑Future Work
❖ Neural Networks
❖ LDPC decoders

Thank you
E-mail: tieu@ue.ucc.ie

