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Introduction to ML

◆ Machine Learning (ML) is everywhere!!

https://www.datasciencecentral.com/profiles/blog/show?id=6448529%3ABlogPost%3A5

98753&commentId=6448529%3AComment%3A599182&xg_source=activity
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Introduction to ML

◆ Machine Learning (ML) is everywhere!!

https://www.datasciencecentral.com/profiles/blog/show?id=6448529%3ABlogPost%3A5

98753&commentId=6448529%3AComment%3A599182&xg_source=activity

◆ Neural Networks (NN) are 

the underlying architecture 

of many ML classification 

systems.
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Your First Convolutional Neural Network

◆ Lenet-5 is used for handwriting recognition

https://www.d2l.ai/chapter_convolutional-neural-networks/lenet.html
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Your First Convolutional Neural Network

◆ Lenet-5 is used for handwriting recognition

Feature extraction identifies interesting features

Classification uses features to identify digit

◆ NNs are comprised of layers of neurons

Neurons (Yj) execute multiply-accumulate :

https://www.d2l.ai/chapter_convolutional-neural-networks/lenet.html

Feature Extraction Layer Data Compression Layer Classification layers
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NNs Require Many Operations

◆ How many MAC operations are needed?
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NNs Require Many Operations

◆ How many MAC operations are needed?

5x5 kernel = 

25-element MAC

Convolution

2x2 kernel =

4-element MAC
5x5 kernel 2x2 kernel

C1 = 28x28x6x(25)      = 117600 

S2 = 14x14x6x(4)        =     4704

C3 = 10x10x16x(25)    =   40000

S4 = 1x1x16x(25)        =       400

F5 = 120x(400)            =   48000    

F6 = 84x(120)              =   10080

Out = 10x(84)              =       840

=  > 200k MACs

4

Input x Neurons

Fully-Connected
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NNs Require Many Operations

◆ How many MAC operations are needed?

◆ Parallelize layers to reduce latency

Increase in hardware
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NN Architectural Optimizations

◆ Discretization of the NN
Partially discretized NN reduces weights

◆ {-1,0,1} (Ternary Connect)

◆ {-1,1} (Binary Connect)

Fully discretized NN reduces weights and I/O

◆ {-1,0,1} (Ternarized NN)

◆ {-1,1} (Binarized NN)

Reduces latency

◆ Smaller HW footprint

◆ Simple operations

» XOR, SUM

Sum called “popcount”

◆ Population count

◆ Smaller than accumulator
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Accumulation Drives Latency

◆ MAC consists of parallel multiplies and a summation

Latency of parallel multiplies =  latency of one multiply

Latency of summation is a system bottleneck

Digital VLSI

Latency = 

Analog Electronic (neuromorphic)

Latency = RC = 

Resistors

Memristors

MOS transistors
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How to Improve on Analog Summation?
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◆ Micro-Ring Resonator (MRR) enables optical 

equivalent to analog electric summation

Latency not influenced by RC constant

Wavelength division multiplexing (WDM) enables parallel 

operation with no increase in hardware
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Accumulate
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Drop
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Single bit 

encoded to 2-bit 

MRR input
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MRRs As Discretized Multiplier

A B Y
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Photonic Neuron

◆ System Simulations using INTERCONNECT.

S-parameters derived from MODE results

Positive branch

Negative branch

VDD
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Photonic NN Processor Architecture

◆ Loosely-coupled architecture controlled by MSP430
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Photonic NN Processor Architecture

◆ Loosely-coupled architecture controlled by MSP430

Weight memory selects Vref to bias MRR

Discretized values enable HW reduction

◆ Reduces latency since analog MUX selects voltage
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Photonic Computation of a CNN

◆ Partial unrolling of convolutional layer reduces 

hardware requirements with minimal performance 

impact

Shift register enables emulation of dragging window
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LeNet and AlexNet Simulation Results

◆ AlexNet performance lagged due to network size

◆ Larger NN 

processor 

reduces 

latency
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LeNet Layer Analysis

◆ Execution time is write-dominated
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Questions?
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Efficiency Analysis

◆ Due to WDM, large optical components rival 

performance per area of CMOS counterparts
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