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Why SNNs over ANNs? 
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Representative SNNs

SCWN SDBN

SCNN

(Spiking 
Competitive 
Winner-Take-all
Network)

(Spiking 
Deep 
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Network)

(Spiking 
Convolutional 
Neural
Network)
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Representative SNNs

SCWN SDBN

SCNN

(Spiking 
Competitive 
Winner-Take-all
Network)

(Spiking 
Deep 
Belief 
Network)

(Spiking 
Convolutional 
Neural
Network)

Input 
dominated

Internal 
dominated

Evenly 
Distributed

Input 
(97.8%)

Input 
(16.1%)

Layer 2
(24.3%)

Layer 3
(58.0%)

Layer 4 (1.6%)

Inhibitory 
(0.8%)

Excitatory
(0.8%)

Input 
(47.2%)

Layer 2
(35.7%)

Layer 3 (7.6%) Layer 4 (7.7%)
Layer 5 (1.7%)

Layer 6 (0.1%)
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The CyNAPSE microarchitecture
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Baseline power consumption
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Energy-efficient memory management techniques

General purpose computing: 

Memory hierarchy and caches

LRU and Random 

Belady’s OPT: Infeasible [3]

DIP[4], RRIP[5], LIRS[6] : Speculative

CyNAPSE: 

Input queue

Event-driven simulation: Inherent forward visibility

Depending on Route latency, Queue length and

steady-state Memory bandwidth

INPUT 
FIFO

BT 1 NID 1 

BT 2 NID 2

BT 3 NID 3

BT 4 NID 4

BT F NID F

Current Event

Max. 
Lookahead Length
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Proposed management scheme 

INPUT 
FIFO

BT 1 NID 1 

BT 2 NID 2

BT 3 NID 3

BT F NID F

BT L NID L

Read: Allocate and set reuse score

Read: Allocate and set reuse score

Read: Allocate and set reuse score

Read: Allocate and set reuse score

Warm Up

Reuse score is a field associated with every cache line that 
denotes the number of times that line is expected to be reused in 
the future. 
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INPUT 
FIFO

BT 1 NID 1 

BT 2 NID 2

BT 3 NID 3

BT F NID F

BT L+1 NID L+1

Proposed management scheme

BT L+2 NID L+2

Read: Allocate and set reuse score

Route: Route, allocate if required, 
and set reuse score

BT 2

BT 3 NID 3

BT 4 NID 4

BT F+1 NID F+1

BT L+2 NID L+2

BT L+3 NID L+3

NID 2 BT 3

BT 4 NID 4

BT 5 NID 5

BT F+2 NID F+2

BT L+3 NID L+3

BT L+4 NID L+4

NID 3 

Multiple 
exclusive R/W 
ports

Post-warm up
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Network-adaptive enhancements

Works for Input Events ONLY. Internal 
Events?

-> Routed in immediately next timestep
-> (Internal/Input) activity is significant in 

some networks (>1 event)

Topological hints
-> E.g. Output layer neurons in feed-forward 
networks

Simulation hints
-> E.g. Sparse activations in convolutional 
layers

Static Kernel 
Information
• Layer types
(conv2D, pool, dense)
• Pyramidal/Basket 

ranges
• Connectivity
• Input/Output

Dynamic Kernel 
Statistics
• Layer activity 

fraction
• Layer mean reuse 

distance

Statistics on a layer-by-layer granularity saves both storage 
and processing overheads 

Need network -adaptive enhancements to the scheme. 
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Network-adaptive enhancements

Static Kernel 
Information
• Layer types
(conv2D, pool, dense)
• Pyramidal/Basket 

ranges
• Connectivity
• Input/Output

Dynamic Kernel 
Statistics

• Layer activity 
fraction

• Layer mean reuse 
distance

Cache Bypassing

Low Activity Layers

Disallowing allocation of low activity neurons preventing them from thrashing high reuse 
input neurons 



High Activity Layers

Line protection

Arming high-activity neurons with an probable reuse score based on their reuse distances to 
prevent being thrashed by low-reuse input neurons
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Network-adaptive enhancements

Static Kernel 
Information
• Layer types
(conv2D, pool, dense)
• Pyramidal/Basket 

ranges
• Connectivity
• Input/Output

Dynamic Kernel 
Statistics

• Layer activity 
fraction

• Layer mean reuse 
distance



12

Experimental infrastructure
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Experimental infrastructure
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Results
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11% lower 16% lower

8% lower 13% lower
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Summary

SNNs -> High efficiency, inherently temporal, hybridized for better 
accuracy

CyNAPSE -> Reconfigurable neural dynamics, reconfigurable 
topology

Event-driven framework -> forward visibility of memory accesses 
exploited

Power consumption -> reduced by up to 44% over baseline and 
23% over conventinal policies
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Spiking Neuron model

Generalized Leaky Integrate and Fire (LIF) model: 

Only 7 parameters need fitting (Ꚍm, ꚌNa, ꚌK, gl, Vrest, Vreset and tref) instead of 20 for HH model. 

Biologically plausible parameters available in-vitro or in-vivo [2]

Reconfigurable: 
-> For conversion to direct current-integration LIF: use very small ꚌNa, ꚌK and skip voltage-gated 
ion-channels
->For conversion to perfect IF: use above and arbitrarily large Ꚍm and/or zero gl

HHFHN HRMLI&F
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lau
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ility

Perceptron

(Not drawn to scale. Inspired by data from [1])
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Generalized LIF Neuron

V
m

t

V0

VrNa

Vth

Leaky Integration

Action potential
generation

Refractory period

−𝑔𝑁𝑎(𝑡)(𝑉𝑚(𝑡) − 𝑉𝑟𝑁𝑎) −𝑔𝐾(𝑡)(𝑉𝑚(𝑡) − 𝑉𝑟𝐾)−𝑔𝑙(𝑉𝑚(𝑡) − 𝑉𝑟𝑒𝑠𝑡)𝜏𝑚
𝑑𝑉𝑚(𝑡)

𝑑𝑡
=

Membrane 
time-constant

𝑆𝑖 𝑡 = ቊ
0, 𝑉𝑚(𝑡) < 𝑉𝑡ℎ
1, 𝑉𝑚(𝑡) ≥ 𝑉𝑡ℎ

Neuron activity
(all-or-nothing/digital)

𝑉𝑚 𝑡 = ቊ
𝑉𝑟𝑒𝑠𝑒𝑡, 𝑡𝑛 ≤ 𝑡 ≤ (𝑡𝑛 + 𝑡𝑟𝑒𝑓)

𝑉𝑚(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Reset (hyperpolarized) 
voltage

Refractory period

[𝑓𝑜𝑟 𝑎 𝑠𝑝𝑖𝑘𝑒 𝑡𝑟𝑎𝑖𝑛 𝑆𝑖 𝑡 = σ𝑛 𝛿(𝑡 − 𝑡𝑛) ]

𝜏𝑁𝑎
𝑑𝑔𝑁𝑎(𝑡)

𝑑𝑡
= −𝑔𝑁𝑎 𝑡 + 𝐼𝑠𝑦𝑛−𝑒𝑥𝑐(𝑡)

𝜏𝐾
𝑑𝑔𝐾(𝑡)

𝑑𝑡
= −𝑔𝐾 𝑡 + 𝐼𝑠𝑦𝑛−𝑖𝑛ℎ(𝑡)

Na+

time-constant

Constant 
Leak conductance

Na+ ion channel
conductance

K+ ion channel
conductance

K+

time-constant

Excitatory
synaptic current

Inhibitory
synaptic current
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Full-custom Silicon Neuron 

(𝑉𝑚 𝑡 − 𝑉𝑟𝑒𝑠𝑡)𝑔𝑙 × (𝑉𝑚 𝑡 − 𝑉𝑟𝐾)𝑔𝐾[𝑡] × (𝑉𝑚 𝑡 − 𝑉𝑟𝑁𝑎)𝑔𝑁𝑎[𝑡] ×+ +𝑉𝑚 𝑡 +𝑽𝒎 𝒕 + 𝟏 = (unless
refractory)

𝑆𝑖[𝑡] = ቊ
0, 𝑉𝑚[𝑡 + 1] < 𝑉𝑡ℎ
1, 𝑉𝑚[𝑡 + 1] ≥ 𝑉𝑡ℎ

𝑉𝑚 𝑡 = ቊ
𝑉𝑟𝑒𝑠𝑒𝑡, 𝑡𝑛 ≤ 𝑡 ≤ (𝑡𝑛 + 𝑡𝑟𝑒𝑓)

𝑉𝑚(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑔𝐾[𝑡]

𝜏𝐾
∆𝑡𝑔𝐾[𝑡] − + 𝐼𝑠𝑦𝑛−𝑖𝑛ℎ(𝑡)𝑔𝐾 𝑡 + 1 = 𝑔𝑁𝑎[𝑡] −𝑔𝑁𝑎 𝑡 + 1 =

𝑔𝑁𝑎[𝑡]

𝜏𝑁𝑎
∆𝑡 + 𝐼𝑠𝑦𝑛−𝑒𝑥𝑐(𝑡)



High-level system operation
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Proposed management scheme

Cache replacement scenarios: 

Compulsory miss at warm-up and event 
read-time
Hit at read-time 
Capacity/Conflict miss at read-time (read-
time replacements)

-> Conservative Approach
-> Aggressive Approach
-> Intelligent Approach 

(reuse threshold)

Compulsory miss at route-time
Hit at route-time
Policy miss at route-time
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Dynamic kernel statistics

Layer-wise spike fractions of (from 
Top) SCWN, SDBN and SCNN

Layer-wise mean reuse distance of 
neurons in the benchmarks
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Read-time replacements

System Power Consumption: Intelligent < Conservative < Aggressive (for all three benchmarks)

System Power Consumption loss: SCWN > SDBN > SCNN

Verdict: Use Intelligent for all benchmarks
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LRU vs Random vs Proposed policy 

Low activity (2.144/Δt) – high reuse network

Largely dominated (97.8%) by input events

SCWN

LRU and Random can exploit intra-
stimulus reuse but not extra-stimulus 
reuse

Static adaptive scheme performs 
reasonably well. Not much gain comes 
from dynamic kernel information (only 
2.2% activity)
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LRU vs Random vs Proposed policy 

Low input activity (3.99/ Δt) –lower reuse network

High internal activity (esp. Layer 3)

SDBN

LRU and Random can exploit most temporal 
locality quite well and relative benefits from 
static adaptive scheme is quite modest.

Third layer neurons benefit greatly from line 
protection and therefore marked relative 
savings in power consumption is observed
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LRU vs Random vs Proposed policy 

Very high input activity (219/Δt) - very low reuse network

High internal activity (esp. Layer 3)

SCNN

LRU and Random exploit very little 
temporal locality but static-adaptive 
policy targets a better fraction of 
input activity

Third layer neurons benefit greatly from line 
protection. 

Relative benefits from Static to Dynamic: SCNN < SDBN
Sparse activations 
in conv2D layers. 
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LRU vs Random vs Proposed policy 

Summary
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Scope of future work

Architectural enhancements:

Multi-core CyNAPSE : interconnects and multi-level memory hierarchy
Core leakage control techniques
Compiler driven optimizations/Better dataflow for SNNs
Is Proposed policy applicable to any event-driven simulation framework? 

Learning:

We are interested in spike driven STDP hardware using memristive devices
Evolving SNNs: benefits of hardware acceleration is still not clear.
Extending CyNAPSE stack up to parsers and down to motor control or BCI. 


