Sparstition: A Partitioning Scheme for Large-Scale Sparse Matrix Vector Multiplication on FPGA Delft University of Technology

<u>Björn Sigurbergsson</u>, Tom Hogervorst, Tong Dong Qiu, Razvan Nane 15th July, 2019

\mathbf{SpMV}

Sparse Matrix Vector Multiplication (SpMV or SMVM).

• Important kernel found in many iterative applications.

\mathbf{SpMV}

- Sparse Matrix Vector Multiplication (SpMV or SMVM).
 - Important kernel found in many iterative applications.
- An encoded (sparse) matrix multiplied with a vector
 - We use CSR (Compressed sparse row)

Challenge

- SpMV challenging to accelerate for large-scale problems.
 - Low data locality

jörn Sigurbergsson (TU Delft)

Partitioned SpMV

15th July. 2019 3 / 1

Challenge

- SpMV challenging to accelerate for large-scale problems.
 - Low data locality
- Partitioning produces intermediates

Challenge

- SpMV challenging to accelerate for large-scale problems.
 - Low data locality
- Partitioning produces intermediates
- Need for merging.

TUDelft

≣⇒

Consequent Parallelism

• Prohibits parallelism.

Consequent Parallelism

- Sparstition prevents generation of intermediate vectors.
 - Parallelism between partitions gained.

Consequent Parallelism

- Sparstition prevents generation of intermediate vectors.
 - Parallelism between partitions gained.

Speedup with parallel pipelines?

The Solution

Ť UDelft			
		· · · · · · · · · · · · · · · · · · ·	୬୯୯
Björn Sigurbergsson (TU Delft)	Partitioned SpMV	15th July, 2019	5 / 13

0

T

 \vec{x} size reduced from 12 to 8.

Build x_p and Compute Partition

Build x_p and Compute Partition

Build x_p and Compute Partition

- Simple
- Increases data locality
 - Eliminates risk of cache misses
 - Enables parallel processing of partitions

- Simple
- Increases data locality
 - Eliminates risk of cache misses
 - Enables parallel processing of partitions
- Reduces \vec{x} size so it may fit in cache

- Simple
- Increases data locality
 - Eliminates risk of cache misses
 - Enables parallel processing of partitions
- Reduces \vec{x} size so it may fit in cache

BUT

- Not suitable for all sparsity patterns
 - Ineffective for dense rows

- Simple
- Increases data locality
 - Eliminates risk of cache misses
 - Enables parallel processing of partitions
- Reduces \vec{x} size so it may fit in cache

BUT

- Not suitable for all sparsity patterns
 - Ineffective for dense rows
- Values are replicated

- Simple
- Increases data locality
 - Eliminates risk of cache misses
 - Enables parallel processing of partitions
- Reduces \vec{x} size so it may fit in cache

BUT

- Not suitable for all sparsity patterns
 - Ineffective for dense rows
- Values are replicated

Most effective for banded matrices

Partitioned SpMV

Image: Image:

- Target: ZedBoard
- \$\vec{x_p}\$ is written to one of the buffers

jörn Sigurbergsson (TU Delft)

Partitioned SpMV

15th July. 2019 9 / 13

- Target: ZedBoard
- \$\vec{x_p}\$ is written to one of the buffers
- Meanwhile, the previous $\vec{x_p}$ is read.

- Target: ZedBoard
- \$\vec{x_p}\$ is written to one of the buffers
- Meanwhile, the previous x
 x p is read.
- Two simultaneous Multiply-Accumulate (MAC) operations.
 - Limited by the bandwidth.

- Target: ZedBoard
- \$\vec{x_p}\$ is written to one of the buffers
- Meanwhile, the previous x_p is read.
- Two simultaneous Multiply-Accumulate (MAC) operations.
 - Limited by the bandwidth.
- NOPs due to static scheduling.

HLS Kernel Performance

Matrix		Exe	cution Time (ms)	
Name	Largest row	[1]	This work	Speedup
bcsstm25	6	2.8	2.15	1.3
dw8192	8	3.5	0.77	4.6
bcsstk12	27	1.0	0.46	2.2
ex7	75	3.0	1.29	2.3

- State-of-the-art (Vivado) HLS Design for SpMV
 - Results in [1] from simulation.

Sparstition Benchmarks

Matrix	Ν	NNZ	Size:Cache	Max/Avg Row	Efficiency	Application Domain
Hummocky	12,380	120,058	0.077	11 / 9.8	0.60	Oil Reservoir
epb1	14,734	95,053	0.092	7 / 6.45	0.59	Thermal Dynamics
wathen100	30,401	471,601	0.19	21 / 15.51	0.55	Random 2d/3d problem
dixmaanl	60,000	299,998	0.38	6 / 3.0	0.62	Optimization Problem
epb3	84,617	463,625	0.53	6 / 5.48	0.68	Thermal Dynamics
NORNE	133,293	2,776,851	0.83	57 / 20.83	0.29	Oil Reservoir
Lin	256,000	1,766,400	1.6	7 / 6.90	0.73	Eigenvalue problem
parabolic_fem	525,825	3,674,625	3.29	7 / 6.99	0.74	Fluid Dynamics
Hamrle3	1,447,360	5,514,242	7.23	6 / 3.81	0.57	Circuit Simulation

Theoretical Solver Speedup

Theoretical Solver Speedup

TUDelft

	~ ••		/	
orn	Sigur	hergsson)eltt)
	Jigui	Dergsson		Circj

Partitioned SpMV

· ▲ 클 ▶ ▲ 클 ▶ _ 클 15th July, 2019

Conclusion

Summary

- Algorithm for large scale SpMV
- Consequent parallelism for certain sparsity patterns.
- High performance kernel for HLS standards.
- Metric to predict speedup for iterative solvers.

-⊒ →

Conclusion

Summary

- Algorithm for large scale SpMV
- Consequent parallelism for certain sparsity patterns.
- High performance kernel for HLS standards.
- Metric to predict speedup for iterative solvers.

Future Work

- Integrate into an actual solver for large scale problems.
- Deploy with multiple parallel pipelines.

Conclusion

Summary

- Algorithm for large scale SpMV
- Consequent parallelism for certain sparsity patterns.
- High performance kernel for HLS standards.
- Metric to predict speedup for iterative solvers.

Future Work

- Integrate into an actual solver for large scale problems.
- Deploy with multiple parallel pipelines.

Thank you!

R. Garibotti, B. Reagen, Y. S. Shao, G. Wei, and D. Brooks, "Assisting high-level synthesis improve spmv benchmark through dynamic dependence analysis," *IEEE Transactions on Circuits and Systems II: Express Briefs*, vol. 65, no. 10, pp. 1440–1444, Oct 2018.

14	
ŤU	Delft

Björn Sigurbergsson (TU Delft)

Partitioned SpMV

15th July, 2019 13 / 3