
Björn Sigurbergsson (TU Delft) Partitioned SpMV 15th July, 2019 1 / 13

Sparstition: A Partitioning Scheme for Large-Scale

Sparse Matrix Vector Multiplication on FPGA

Delft University of Technology

Björn Sigurbergsson, Tom Hogervorst, Tong Dong Qiu, Razvan Nane

15th July, 2019



SpMV

• Sparse Matrix Vector Multiplication (SpMV or SMVM).
• Important kernel found in many iterative applications.

• An encoded (sparse) matrix multiplied with a vector
• We use CSR (Compressed sparse row)
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Challenge

• SpMV challenging to
accelerate for
large-scale problems.

• Low data locality

• Partitioning produces
intermediates

• Need for merging.
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Consequent Parallelism

• Prohibits parallelism.

• Sparstition prevents
generation of
intermediate vectors.

• Parallelism between
partitions gained.

Speedup with parallel
pipelines?
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The Solution
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The Algorithm

~x size reduced from 12 to 8.
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Build xp and Compute Partition
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Pros & Cons

• Simple

• Increases data locality
• Eliminates risk of cache misses
• Enables parallel processing of partitions

• Reduces ~x size so it may fit in cache

BUT

• Not suitable for all sparsity patterns
• Ineffective for dense rows

• Values are replicated

Most effective for banded matrices
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HLS Pipeline

• Target: ZedBoard

• ~xp is written to one
of the buffers

• Meanwhile, the
previous ~xp is read.

• Two simultaneous
Multiply-
Accumulate (MAC)
operations.

• Limited by the
bandwidth.

• NOPs due to static
scheduling.
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HLS Kernel Performance

Matrix
Execution Time

(ms)
Name Largest row [1] This work Speedup

bcsstm25 6 2.8 2.15 1.3
dw8192 8 3.5 0.77 4.6
bcsstk12 27 1.0 0.46 2.2

ex7 75 3.0 1.29 2.3

• State-of-the-art
(Vivado) HLS Design
for SpMV

• Results in [1] from
simulation.

Björn Sigurbergsson (TU Delft) Partitioned SpMV 15th July, 2019 10 / 13



Sparstition Benchmarks

Matrix N NNZ Size:Cache Max/Avg Row Efficiency Application Domain
Hummocky 12,380 120,058 0.077 11 / 9.8 0.60 Oil Reservoir

epb1 14,734 95,053 0.092 7 / 6.45 0.59 Thermal Dynamics
wathen100 30,401 471,601 0.19 21 / 15.51 0.55 Random 2d/3d problem
dixmaanl 60,000 299,998 0.38 6 / 3.0 0.62 Optimization Problem

epb3 84,617 463,625 0.53 6 / 5.48 0.68 Thermal Dynamics
NORNE 133,293 2,776,851 0.83 57 / 20.83 0.29 Oil Reservoir

Lin 256,000 1,766,400 1.6 7 / 6.90 0.73 Eigenvalue problem
parabolic fem 525,825 3,674,625 3.29 7 / 6.99 0.74 Fluid Dynamics

Hamrle3 1,447,360 5,514,242 7.23 6 / 3.81 0.57 Circuit Simulation
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Theoretical Solver Speedup

No. of Partitions (log)
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Conclusion

Summary

• Algorithm for large scale SpMV

• Consequent parallelism for certain sparsity patterns.

• High performance kernel for HLS standards.

• Metric to predict speedup for iterative solvers.

Future Work
• Integrate into an actual solver for large scale problems.

• Deploy with multiple parallel pipelines.

Thank you!

Björn Sigurbergsson (TU Delft) Partitioned SpMV 15th July, 2019 13 / 13



Conclusion

Summary

• Algorithm for large scale SpMV

• Consequent parallelism for certain sparsity patterns.

• High performance kernel for HLS standards.

• Metric to predict speedup for iterative solvers.

Future Work
• Integrate into an actual solver for large scale problems.

• Deploy with multiple parallel pipelines.

Thank you!

Björn Sigurbergsson (TU Delft) Partitioned SpMV 15th July, 2019 13 / 13



Conclusion

Summary

• Algorithm for large scale SpMV

• Consequent parallelism for certain sparsity patterns.

• High performance kernel for HLS standards.

• Metric to predict speedup for iterative solvers.

Future Work
• Integrate into an actual solver for large scale problems.

• Deploy with multiple parallel pipelines.

Thank you!

Björn Sigurbergsson (TU Delft) Partitioned SpMV 15th July, 2019 13 / 13



R. Garibotti, B. Reagen, Y. S. Shao, G. Wei, and D. Brooks,
“Assisting high-level synthesis improve spmv benchmark through
dynamic dependence analysis,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 65, no. 10, pp. 1440–1444, Oct
2018.

Björn Sigurbergsson (TU Delft) Partitioned SpMV 15th July, 2019 13 / 13


	Background
	The Sparstition Algorithm
	HLS Design
	Experimental Results

