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Snappy (De)compression Background

• LZ77-based, byte-level 
• In Hadoop ecosystem
• Support Parquet, ORC, etc.
• Low compression ratio
• Fast compression and decompression
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Motivation

• Snappy is widely used but not fast enough
• Widely used in databses and big data processing
• Optimized CPU throughput about 1.4GB/s in a CPU core

(only 1% out of the main memory bandwidth) 

• New and high-bandwidth connections for storage
• PCIe Gen4 or OpenCAPI attached NVMe

• 24 NVMe drives have around 75GB/s read bandwidth
• Difficult for prior design to keep up with this high bandwidth
• FPGAs can be used to decompress them
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Example Motivating System: OpenPOWER MiHawk

• 24 NVMe
• Each >3GB/s read

• 4x OpenCAPI
• Each ~22GB/s

• 4x Gen4 x16
• e.g. 200Gb/s E-net

• Would like each FPGA-
based adapter to 
support 6-8 NVMe ( 20-
25GB/s )

Source: Wistron



Snappy Compression

• Two kinds of token: Literal token and copy token
• Find match from previous data
• Example: 
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ABCDEFGHABCD

offset 8, length4

Use (8,4) to replace “ABCD”



Snappy Compression
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…    ABCDEFGHABCD

Literal

copy : offset 8
length 4

No Match!

…    ABCDEFGHABCD

Match!

… (Literal, “ABCDEFGH”) (Copy, 8, 4)Output

Input

Generate a literal token

Find next match

Generate a copy token



Snappy (De)compression
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…   ABCDEFGHABCD

Copy

(Literal, “ABCDEFGH”)

…    ABCDEFGH

…

(Copy, 8, 4)
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Design Challenge

• Various token size
• Meta data: 1-3 bytes
• Token size: 2-64K bytes

• Parallelize token execution
• BRAM bank conflict
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BRAM Bank Conflict

16X

…

• Write – Write
• Same block, same line

BRAMs
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BRAM Bank Conflict

16X

…

• Write – Write
• Same block, different lines

BRAMs
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BRAM Bank Conflict

16X

…

• Read – Read

BRAMs
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Design Challenge

• Various token size
• Meta data: 1-3 bytes
• Token size: 2-64K bytes

• Parallelize token execution
• BRAM bank conflict

• Read-after-write dependency
• Stall the pipeline
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Refine Method

• Refine from token-level to BRAM bank-level
• Convert tokens into independent BRAM read/write commands

16X

…

16X

…
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Recycle Method

• Stall? 
• -> throughput decrease

• Tomasulo/Scoreboarding?
• Too complex 

• Recycle and wait for next round execution
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Architecture Overview
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Slice Parser – find token boundary
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Experiment

• Platform
• ADM 9v3 (Xilinx VU3P FPGA)

• CAPI 2.0 Interface (effective data rate 11GB/s)

• Power 9 22-core CPU in Ubuntu 18.04.1 LTS

• Benchmark
• TPC-H (two different column in “lineitem” table and the whole table)

• XML from Wiki

• Matrix data
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Experiment - Results

• End-to-end Throughput

• 250MHz
• 14% LUTs
• Up to 7.2GB/s
• 10x faster than CPU
• 10x more power 

efficient



20

Summary

• A Refine method to releif BRAM bank conflicts
• A Recycle method to reduce impact of RAW dependency
• Assumption Bit Map to handle byte split in high speed
• 7.2 GB/s with 14.2% logic resource and 7% BRAM resource
• 5 engines can saturate OpenCAPI bandwidth 
• 10x faster and 10x more power efficient
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Open 
Source

https://github.com/ChenJianyunp/FPGA-Snappy-Decompressor.git


