
1

Refine and Recycle: A Method to
Increase Decompression Parallelism

Authors: Jian Fang1, Jianyu Chen1, Jinho Lee2,
Zaid Al-Ars1, H. Peter Hofstee1,2

ASAP 2019, New York, US
Speaker: H.Peter Hofstee
July 17th, 2019

2

Outline

• Motivation
• Snappy (De)compression
• Design Challenges
• Refine and Recycle Method
• Proposed Decompressor Architecture
• Experiments
• Summary

3

Snappy (De)compression Background

• LZ77-based, byte-level
• In Hadoop ecosystem
• Support Parquet, ORC, etc.
• Low compression ratio
• Fast compression and decompression

4

Motivation

• Snappy is widely used but not fast enough
• Widely used in databses and big data processing
• Optimized CPU throughput about 1.4GB/s in a CPU core

(only 1% out of the main memory bandwidth)

• New and high-bandwidth connections for storage
• PCIe Gen4 or OpenCAPI attached NVMe

• 24 NVMe drives have around 75GB/s read bandwidth
• Difficult for prior design to keep up with this high bandwidth
• FPGAs can be used to decompress them

5

Example Motivating System: OpenPOWER MiHawk

• 24 NVMe
• Each >3GB/s read

• 4x OpenCAPI
• Each ~22GB/s

• 4x Gen4 x16
• e.g. 200Gb/s E-net

• Would like each FPGA-
based adapter to
support 6-8 NVMe (20-
25GB/s)

Source: Wistron

Snappy Compression

• Two kinds of token: Literal token and copy token
• Find match from previous data
• Example:

6

ABCDEFGHABCD

offset 8, length4

Use (8,4) to replace “ABCD”

Snappy Compression

7

… ABCDEFGHABCD

Literal

copy : offset 8
length 4

No Match!

… ABCDEFGHABCD

Match!

… (Literal, “ABCDEFGH”) (Copy, 8, 4)Output

Input

Generate a literal token

Find next match

Generate a copy token

Snappy (De)compression

8

… ABCDEFGHABCD

Copy

(Literal, “ABCDEFGH”)

… ABCDEFGH

…

(Copy, 8, 4)

9

Design Challenge

• Various token size
• Meta data: 1-3 bytes
• Token size: 2-64K bytes

• Parallelize token execution
• BRAM bank conflict

10

BRAM Bank Conflict

16X

…

• Write – Write
• Same block, same line

BRAMs

11

BRAM Bank Conflict

16X

…

• Write – Write
• Same block, different lines

BRAMs

12

BRAM Bank Conflict

16X

…

• Read – Read

BRAMs

13

Design Challenge

• Various token size
• Meta data: 1-3 bytes
• Token size: 2-64K bytes

• Parallelize token execution
• BRAM bank conflict

• Read-after-write dependency
• Stall the pipeline

14

Refine Method

• Refine from token-level to BRAM bank-level
• Convert tokens into independent BRAM read/write commands

16X

…

16X

…

15

Recycle Method

• Stall?
• -> throughput decrease

• Tomasulo/Scoreboarding?
• Too complex

• Recycle and wait for next round execution

16

Architecture Overview

17

Slice Parser – find token boundary

18

Experiment

• Platform
• ADM 9v3 (Xilinx VU3P FPGA)

• CAPI 2.0 Interface (effective data rate 11GB/s)

• Power 9 22-core CPU in Ubuntu 18.04.1 LTS

• Benchmark
• TPC-H (two different column in “lineitem” table and the whole table)

• XML from Wiki

• Matrix data

19

Experiment - Results

• End-to-end Throughput

• 250MHz
• 14% LUTs
• Up to 7.2GB/s
• 10x faster than CPU
• 10x more power

efficient

20

Summary

• A Refine method to releif BRAM bank conflicts
• A Recycle method to reduce impact of RAW dependency
• Assumption Bit Map to handle byte split in high speed
• 7.2 GB/s with 14.2% logic resource and 7% BRAM resource
• 5 engines can saturate OpenCAPI bandwidth
• 10x faster and 10x more power efficient

21

Open
Source

https://github.com/ChenJianyunp/FPGA-Snappy-Decompressor.git

