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INTRODUCTION (1/2)

* Volume and diversity of data have grown exponentially over the
past few years

* Embedded systems try to keep pace with the constant gro wth of
data

‘ Scale the technological parameters to increase performa nce
while keeping energy consumption at bay.
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‘ Many-core scaling is hitting a point of saturation
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INTRODUCTION (2/2)

* Many application domains (image/signal processing, ma chine
learning, etc.) are tolerant to some degree of error

* Performance gains can be achieved at the application-| evel thanks
to approximate computing

* |nexactness can be introduced in computations to reduce energy
consumption

Compressed image Compressed image
(32 colors) (64 colors)
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APPROXIMATE COMPUTING (1/2)

* Approximate computing is an energy-efficient comput Ing
paradigm that exploits applications’ tolerance to e rror

Approximate Computing Approaches

T

HW approaches: SW approaches:
Approximate arithmetic units Approximate programming techniques
(adders, multipliers, etc.) (precision tuning, loop perforation, etc.)
* A way to introduce inexactness in an application is by precision

reduction of FLP variables and computations

* AFLP number fisrepresented by an exponente , a mantissa m
and a sign bits : f=(—=1)% *m* 2°¢

* Precision is the number of bits of the mantissa
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APPROXIMATE COMPUTING (2/2)

* Precision tuning consists in finding the optimal bi t width of FLP
variables that:

» Minimizes energy cost and
» Maintains reasonable computational accuracy

Precision Tuning

FLP Simulation techniques: Analytical techniques:
FLP with adjustable bit widths A mathematical formula
e.g. MPFR library A one-time effort
Very large search space Only works with smooth operations
(e.g. addition, multiplication, etc.)
* Existing analytical work focuses on smooth operatio ns, precisely

addition and multiplication

: Error analysis of square root operation is lacking

How to deal with applications containing both smoot h and
non-smooth operations?
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ERROR ANALYSIS OF THE SQUARE ROOT OPERATION
Ceatech (1/3)

* The square root operation y = +/a, a>0 is implemented using the
Newton Raphson iteration

1
Yn+1 = E(yn + i)

* Two types of error are investigated:

» Algorithmic deviation : caused by the Newton Raphson

approach
» Round-off error : caused by FLP representation

‘ At which Newton Raphson iteration is it preferable to stop the
computations for a specific precision p?
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(2/3)

ERROR ANALYSIS OF THE SQUARE ROOT OPERATION

* Bounding the round-off error:

6<nx3e+eg e g, £m: machine epsilon
n: number of iterations

* Bounding the systematic error: the relative systema tic error in
computing y = +/a at iterationi :0..n

—+a al _
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ERROR ANALYSIS OF THE SQUARE ROOT OPERATION
(3/3)

0‘% round-off error 0.% round-off error 1
0.8 systematic error 0.8 systematic error
. b = e
S 05 S o5
o 04 F v 0.4
0.3 0.3
0.2 0.2
01 ; . 0.1 _
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
sqrt: square root iterations sqrt: square root iterations
(a) p=4 (b) p=9
* The round-off error increases proportionally to the number of sqrt
iterations

* The systematic error declines as the number of iter  ations grows

The intersection between the 2 lines indicates the optimal
number of iterations
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APPLICATION TO K-MEANS (1/3)

* Apply our study of the square root in an applicatio n that contains
both smooth and non-smooth operations

‘ Combine our analytical approach with a simulation a pproach

® Square root operations can be found in image/signal processing,
spectrum analysis, clustering applications, etc.

=) \\e chose K-means, a data clustering algorithm

=) K-means is used to cluster a set of unlabeled data into k
clusters based on data similarity

mmmm)  Similarity is determined using the Euclidean distan ce,
which involves square root operations
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APPLICATION TO K-MEANS (2/3)

Set initial centroids (randomly)

i

Map each pixel to its closest centroid:
dist(pl<p2) = \/(R1 — R2)? 4 (G1 — G2)? + (B1 — B2)?

-

Y

Compute new centroids

|

Re-map each pixel to its closest centroid

.

Pixels still moving?

Flowchart of K-means in the context of color quantization
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APPLICATION TO K-MEANS (3/3)

We studied the sensitivity of K-means by arbitraril y varying the
number of bits of the mantissa (2-23bits)

* We re-wrote K-means using the MPFR library

mpfr_t var; // transform FLP variables into MPFR var  iables
mpfr_init2(var,4); // assign precision 4 to var

mpfr_mul(var,var,varl,MPFR_RNDN); // transform oper  ations into MPFR operations

* We assign to each precision its corresponding numbe r of square
root iterations according to our analytical results

* We also varied K-means-specific parameters:

» K: number of clusters
» n: number of iterations needed for the clustering process to converge
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EXPERIMENTAL RESULTS (1/2)

* We transform the original source code of K-means by varying (k,n)

for a given (p,sgrt), compile it to an ARM binary a  nd check:
» Energy consumption (using measurements of ARM cortex-A7 and profile information)

#types
Etotal = Zi:{p op; X €; , op;: nbr of operations of type i

e;. energy consumed per operation of type i

» QoS using the SSIM index (perception-based metric)
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Normalized energy values for different precisions
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EXPERIMENTAL RESULTS (2/2)
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p. precision p: precision
Percentage of energy gain SSIM values

* For an SSIM within [0.95,1], an energy gain of 41.8 7% is achieved
with a (p=6,k=100,sqrt=4) configuration
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CONCLUSION

* An analytical error examination of the Newton Raphson
approximation was proposed to optimize the sqgrt impleme ntation

* We associated to each precision its optimal number of New ton
Raphson iterations

* We gquantified the efficiency of the error bound in the c ontext of K-
means

* The approximated versions of K-means were compared to t he
exact version in terms of QoS and relative energy gain

ASAP | Oumaima Matoussi | 07/15/2019 | 20
I



Leti, technology research institute
Commissariat a I'énergie atomique et aux énergies alternatives
Minatec Campus | 17 rue des Martyrs | 38054 Grenoble Cedex | France

B NSTITUT

CARNOT
o ceaien |




