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• Volume and diversity of data have grown exponentially over the 
past few years

• Embedded systems try to keep pace with the constant gro wth of 
data

Scale the technological parameters to increase performa nce 
while keeping energy consumption at bay.

Many-core scaling is hitting a point of saturation

INTRODUCTION (1/2)
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• Many application domains (image/signal processing, ma chine 
learning, etc.) are tolerant to some degree of error

• Performance gains can be achieved at the application-l evel thanks
to approximate computing

• Inexactness can be introduced in computations to reduce energy
consumption

INTRODUCTION (2/2)
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• Approximate computing is an energy-efficient comput ing 
paradigm that exploits applications’ tolerance to e rror

Approximate Computing Approaches

• A way to introduce inexactness in an application is  by precision 
reduction of FLP variables and computations

• A FLP number f is represented by an exponent e , a mantissa m 
and a sign bit s : f = (−�)� * m * ��

• Precision is the number of bits of the mantissa

APPROXIMATE COMPUTING (1/2)

HW approaches:
Approximate arithmetic units

(adders, multipliers, etc.)

SW approaches:
Approximate programming techniques

(precision tuning, loop perforation, etc.)
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• Precision tuning consists in finding the optimal bi t width of FLP 
variables that:
Minimizes energy cost and
Maintains reasonable computational accuracy

Precision Tuning

• Existing analytical work focuses on smooth operatio ns, precisely 
addition and multiplication

Error analysis of square root operation is lacking
How to deal with applications containing both smoot h and  
non-smooth operations?

APPROXIMATE COMPUTING (2/2)

FLP Simulation techniques:
FLP with adjustable bit widths

e.g. MPFR library
Very large search space

Analytical techniques:
A mathematical formula 

A one-time effort
Only works with smooth operations
(e.g. addition, multiplication, etc.)
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• The square root operation 	 = �� , a>0 is implemented using the 
Newton Raphson iteration
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• Two types of error are investigated:
Algorithmic deviation : caused by the Newton Raphson 

approach
Round-off error : caused by FLP representation

At which Newton Raphson iteration is it preferable to stop the 
computations for a specific precision p?

ERROR ANALYSIS OF THE SQUARE ROOT OPERATION
(1/3)
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• Bounding the round-off error:
� ≤  × �� + �, � ≤ �� ��: ������� ���� !�

               �: "�#�$ %& '(�$�('%�

• Bounding the systematic error: the relative systema tic error in 
computing ) = �� at iteration i : *. .       
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ERROR ANALYSIS OF THE SQUARE ROOT OPERATION
(2/3)
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ERROR ANALYSIS OF THE SQUARE ROOT OPERATION
(3/3)

• The round-off error increases proportionally to the  number of sqrt
iterations

• The systematic error declines as the number of iter ations grows
The intersection between the 2 lines indicates the optimal 

number of iterations
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APPLICATION TO K-MEANS (1/3)

• Apply our study of the square root in an applicatio n that contains 
both smooth and non-smooth operations

Combine our analytical approach with a simulation a pproach

• Square root operations can be found in image/signal  processing, 
spectrum analysis, clustering applications, etc.

We chose K-means, a data clustering algorithm

K-means is used to cluster a set of unlabeled data into k      
clusters based on data similarity

Similarity is determined using the Euclidean distan ce,  
which involves square root operations
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APPLICATION TO K-MEANS (2/3)

Flowchart of K-means in the context of color quantization
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APPLICATION TO K-MEANS (3/3)

• We studied the sensitivity of K-means by arbitraril y varying the 
number of bits of the mantissa (2-23bits)

• We re-wrote K-means using the MPFR library
mpfr_t var; // transform FLP variables into MPFR var iables 

mpfr_init2(var,4);   // assign precision 4 to var

mpfr_mul(var,var,var1,MPFR_RNDN); // transform oper ations into MPFR operations

• We assign to each precision its corresponding numbe r of square 
root iterations according to our analytical results

• We also varied K-means-specific parameters:
 K: number of clusters
 n: number of iterations needed for the clustering process to converge 
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EXPERIMENTAL RESULTS (1/2)

• We transform the original source code of K-means by  varying (k,n) 
for a given (p,sqrt), compile it to an ARM binary a nd check:
 Energy consumption (using measurements of ARM cortex-A7 and profile information)

012134 = ∑ 678 × 98
#1;<=>
8?@ ,    678: nbr of operations of type i

                                                                                          98: energy consumed per operation of type i

 QoS using the SSIM index (perception-based metric)

Normalized energy values for different precisions



| 18ASAP | Oumaima Matoussi | 07/15/2019

• For an SSIM within [0.95,1], an energy gain of 41.8 7% is achieved 
with a (p=6,k=100,sqrt=4) configuration

EXPERIMENTAL RESULTS (2/2)

Percentage of energy gain SSIM values

(K,sqrt) (K,sqrt)
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• An analytical error examination of the Newton Raphson
approximation was proposed to optimize the sqrt impleme ntation

• We associated to each precision its optimal number of New ton 
Raphson iterations

• We quantified the efficiency of the error bound in the c ontext of K-
means

• The approximated versions of K-means were compared to t he 
exact version in terms of QoS and relative energy gain

CONCLUSION
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