
Customisable Control Policy
Learning for Robotics

Ce Guo†, Wayne Luk†, Stanley Loh Qing Shui†

Alexander Warren‡ and Joshua Levine‡

† Imperial College London ‡ Intel

ASAP’19, Cornell Tech, New York, 15 July 2019

0

Background: modern robot

• Complicated and
unpredictable

• Equipped with modern
sensors: lidars, cameras, etc.

• Hard-code programming:
tedious and error-prone

1

Background: robot learning

• Robot learning
• No hard-code action rules

• Train robots by rewarding
proper actions

• Training on physical robots
• Slow training process

• Potential physical damage
during training

2

Background: sim-to-real learning

• Sim-to-real robot learning
• Train robot with simulation for improved efficiency

• Simulated robot learns a policy set during training

• Transfer policy set to physical robot after training

3

Simulated world

Environment

Robotic arm

Rewards
and

states

Actions

Policy set

Replay
buffer

Reinforcement
learning

algorithm
Updates

Physical world

Environment

Robotic arm

States Actions

Policy set

Deep deterministic policy gradients

4

• DDPG: a reinforcement learning technique

• Continuous action space supported

• Deep networks used as function approximators

• Efficiency bottleneck: gradient computation

Contributions

5

1. Customisable hardware architecture for DDPG
• Back-propagation via odd layers and even layers
• Policy learned and encoded with fixed-point numbers

2. Sim-to-real policy learning platform
• Customised 3D printed robotic arm
• Simulated robotic arm and environment

3. Evaluation: accelerated policy learning
• Stratix V at 200MHz versus i7-6700 at 3.4GHz
• Faster gradient computation: up to 18.7 times speedup
• Better convergence: fewer training episodes

1. Customisable DDPG architecture

• Task partitioning
• Software on CPU: simulation and weight update
• Customised hardware on FPGA: gradient computation

• Gradient computation via backpropagation
• Forward pass for decisions
• Backward pass for feedbacks and gradients

• Hardware resources shared by both passes
• Parallel elements for odd and even layers
• Alternating between even and odd layers

• Policy set encoded in fixed-point numbers

6

Odd layer

7

• A new input is available every tick
• An output becomes ready every K ticks

Inputs streamed in continuously
Outputs streamed out at regular intervals

Tick 1

Tick 2

• A new input is available every K ticks
• An output becomes ready every tick

Even layer

8

Different IO stream
pattern from odd layers

Backpropagation

9

Forward pass for
action signals

Backward pass for
feedbacks and gradients

Computation of initial
feedback signals

2. Platform for sim-to-real learning

• Major components:
• Customised hardware for gradient computation
• 3D printed robotic arm with electromagnet
• Simulated robotic arm and environment

• State space: 23 components
• 12 for joint-box and goal-box distances
• 9 for positions of end effector, box and goal
• 2 for progress monitoring

• Action space: 5 components
• 4 rotation angles for motors
• 1 control signal for end effector

10

Physical robot

11

State computation

12

Simulation

13

3.Evaluation: accelerated policylearning

• Aspects to evaluate
• Execution time for gradient computation in each episode
• Number of episodes before convergence

• Software on CPU
• Intel Core i7-6700 CPU (14nm, 4 cores, 3.4 GHz)
• Single-precision floating point arithmetic using NumPy

• Hardware on FPGA
• Intel Stratix-V FPGA (28nm, 200 MHz)
• 32-bit fixed-point arithmetic (8 integer bits; 24 fractional bits)

• Models
1. FPGA-based DDPG
2. FPGA-based DDPG with expanded action space
3. Deeper model

14

Reward function

15

Sum of four components:

Distance between
end effector and box

Elevation angle
of last segmentEnergy saver for

electromagnet

Distance between
box and goal

Gradient computation

16

Gradient computation and transmission

Gradient computation without transmission

Technology
CPU: 14nm
FPGA: 28nm

Speed bottleneck: IO bandwidth

Gradient computation

17

Theoretical maximum acceleration for policy learning

• Execution time estimation for DDPG learning
• Gradient computation + gradient update

• Assumptions in estimation
• No IO bottleneck

• Extra resources for weight optimiser

• Design runs at 200MHz Higher than the speedup for
gradient computation

Policy transfer

• Task specification
• A: (400,0) → (400,150)

• B: (400,0) → (200,0)

• C: (300,0) → (400,150)

• D: (300,0) → (200,150)

• E: (200,0) → (400,150)

• F: (200,0) → (400,0)

• Subtasks
• Attach: electromagnet attaches box

• Put: robotic arm moves box to goal position

18

Proposed hardware:
first to support this subtask

Policy transfer

19

Number of episodes to achieve goal

* Goal achieved without lifting
TRPO: Trust Region Policy Optimisation
DDPG/F-DDPG: DDPG model on CPU/FPGA
[1] S. Shao et al. “Towards hardware accelerated reinforcement learning
for applicationspecific robotic control,” ASAP’18

Fixed-point arithmetic
reduces number of episodes

F-DDPG gives
better policies

New direction for robot training!

1. Customisable hardware architecture for DDPG
• Back-propagation via odd layers and even layers
• Policy learned and encoded with fixed-point numbers

2. Policy learning platform
• Customised 3D printed robotic arm
• Simulated robotic arm and environment

3. Evaluation: accelerated policy learning
• Stratix V at 200MHz versus i7-6700 at 3.4GHz
• Faster gradient computation: up to 18.7 times speedup
• Better convergence: fewer training episodes

20

A short video…

• https://youtu.be/bKnkJPQcyIM

21

https://youtu.be/bKnkJPQcyIM

