# Customisable Control Policy Learning for Robotics

Ce Guo<sup>+</sup>, Wayne Luk<sup>+</sup>, Stanley Loh Qing Shui<sup>+</sup> Alexander Warren<sup>‡</sup> and Joshua Levine<sup>‡</sup> <sup>+</sup> Imperial College London <sup>‡</sup> Intel

ASAP'19, Cornell Tech, New York, 15 July 2019

## Background: modern robot

- Complicated and unpredictable
- Equipped with modern sensors: lidars, cameras, etc.
- Hard-code programming: tedious and error-prone



# Background: robot learning

- Robot learning
  - No hard-code action rules
  - Train robots by rewarding proper actions
- Training on physical robots
  - Slow training process
  - Potential physical damage during training



#### Background: sim-to-real learning

- Sim-to-real robot learning
  - Train robot with simulation for improved efficiency
  - Simulated robot learns a policy set during training
  - Transfer policy set to physical robot after training



# Deep deterministic policy gradients

- DDPG: a reinforcement learning technique
- Continuous action space supported
- Deep networks used as function approximators
- Efficiency bottleneck: gradient computation



#### Contributions

1. Customisable hardware architecture for DDPG

- Back-propagation via odd layers and even layers
- Policy learned and encoded with fixed-point numbers
- 2. Sim-to-real policy learning platform
  - Customised 3D printed robotic arm
  - Simulated robotic arm and environment
- 3. Evaluation: accelerated policy learning
  - Stratix V at 200MHz versus i7-6700 at 3.4GHz
  - Faster gradient computation: up to 18.7 times speedup
  - Better convergence: fewer training episodes

# 1. Customisable DDPG architecture

- Task partitioning
  - Software on CPU: simulation and weight update
  - Customised hardware on FPGA: gradient computation
- Gradient computation via backpropagation
  - Forward pass for decisions
  - Backward pass for feedbacks and gradients
- Hardware resources shared by both passes
  - Parallel elements for **odd** and **even** layers
  - Alternating between even and odd layers
- Policy set encoded in fixed-point numbers

# Odd layer

- A new input is available every tick
- An output becomes ready every K ticks

#### Inputs streamed in continuously Outputs streamed out at regular intervals



7

# Even layer

- A new input is available every K ticks
- An output becomes ready every tick

#### Different IO stream pattern from odd layers



# Backpropagation



# 2. Platform for sim-to-real learning

- Major components:
  - Customised hardware for gradient computation
  - 3D printed robotic arm with electromagnet
  - Simulated robotic arm and environment
- State space: 23 components
  - 12 for joint-box and goal-box distances
  - 9 for positions of end effector, box and goal
  - 2 for progress monitoring
- Action space: 5 components
  - 4 rotation angles for motors
  - 1 control signal for end effector

## Physical robot



#### State computation



#### Simulation



# 3. Evaluation: accelerated policy learning

- Aspects to evaluate
  - Execution time for gradient computation in each episode
  - Number of episodes before convergence
- Software on CPU
  - Intel Core i7-6700 CPU (14nm, 4 cores, 3.4 GHz)
  - Single-precision floating point arithmetic using NumPy
- Hardware on FPGA
  - Intel Stratix-V FPGA (28nm, 200 MHz)
  - 32-bit fixed-point arithmetic (8 integer bits; 24 fractional bits)
- Models
  - 1. FPGA-based DDPG
  - 2. FPGA-based DDPG with expanded action space
  - 3. Deeper model

#### Reward function



#### Gradient computation

Gradient computation and transmission

| Μ                                                                                                            | Connect  | ion FPGA exe. tir | me (ms) Spe | edup Norm.  | speedup |  |  |  |
|--------------------------------------------------------------------------------------------------------------|----------|-------------------|-------------|-------------|---------|--|--|--|
| 1                                                                                                            | PCIe     | 0.250             | 2.          | .57 5       | 5.14    |  |  |  |
| 2                                                                                                            | PCIe     | 0.250             | 3.          | .68         | 7.36    |  |  |  |
| 3                                                                                                            | Infiniba | nd 2.311          |             | .33 2       | 2.66    |  |  |  |
| Speed bottleneck: IO bandwidthTechnology<br>CPU: 14nm<br>FPGA: 28nmGradient computation without transmission |          |                   |             |             |         |  |  |  |
|                                                                                                              | M FF     | GA exe. time (ms) | Speedup     | Norm. Speed | up      |  |  |  |
|                                                                                                              | 1        | 0.0492            | 13.1        | 26.2        |         |  |  |  |
|                                                                                                              | 2        | 0.0492            | 18.7        | 37.3        |         |  |  |  |

#### Gradient computation

- Execution time estimation for DDPG learning
  - Gradient computation + gradient update
- Assumptions in estimation
  - No IO bottleneck
  - Extra resources for weight optimiser
  - Design runs at 200MHz Higher than the speedup for gradient computation

| Т | heoretical | maximum acce | eleration for | policy learning |
|---|------------|--------------|---------------|-----------------|
| M | Cycles     | Time (ms)    | Speedup       | Norm, speedup   |

| Μ | Cycles | Time (ms) | Speedup | Norm. speedup |
|---|--------|-----------|---------|---------------|
| 1 | 5450   | 0.028     | 23      | 47            |
| 2 | 5450   | 0.028     | 33      | 67            |
| 3 | 17000  | 0.085     | 35      | 71            |

# Policy transfer

- Task specification
  - A: (400,0) → (400,150)
  - B: (400,0) → (200,0)
  - C: (300,0) → (400,150)
  - D: (300,0) → (200,150)
  - E: (200,0) → (400,150)
  - F: (200,0) → (400,0)

Proposed hardware: first to support this subtask

- Subtasks
  - Attach: electromagnet attaches box
  - Put: robotic arm moves box to goal position

# Policy transfer

#### Number of episodes to achieve goal



[1] S. Shao *et al.* "Towards hardware accelerated reinforcement learning for applicationspecific robotic control," ASAP'18

# New direction for robot training!

1. Customisable hardware architecture for DDPG

- Back-propagation via odd layers and even layers
- Policy learned and encoded with fixed-point numbers
- 2. Policy learning platform
  - Customised 3D printed robotic arm
  - Simulated robotic arm and environment
- 3. Evaluation: accelerated policy learning
  - Stratix V at 200MHz versus i7-6700 at 3.4GHz
  - Faster gradient computation: up to 18.7 times speedup
  - Better convergence: fewer training episodes

#### A short video...

<u>https://youtu.be/bKnkJPQcyIM</u>