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Background: modern robot

* Complicated and
unpredictable

* Equipped with modern
sensors: lidars, cameras, etc.

* Hard-code programming:
tedious and error-prone



Background: robot learning

* Robot |learning
* No hard-code action rules

* Train robots by rewarding
proper actions

* Training on physical robots
e Slow training process

e Potential physical damage
during training




Background: sim-to-real learning

e Sim-to-real robot learning
* Train robot with simulation for improved efficiency
e Simulated robot learns a policy set during training
* Transfer policy set to physical robot after training
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Deep deterministic policy gradients

* DDPG: a reinforcement learning technique

* Continuous action space supported

* Deep networks used as function approximators
* Efficiency bottleneck: gradient computation
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Contributions

1. Customisable hardware architecture for DDPG
* Back-propagation via odd layers and even layers
* Policy learned and encoded with fixed-point numbers

2. Sim-to-real policy learning platform
e Customised 3D printed robotic arm
e Simulated robotic arm and environment

3. Evaluation: accelerated policy learning
e Stratix V at 200MHz versus i7-6700 at 3.4GHz
e Faster gradient computation: up to 18.7 times speedup
* Better convergence: fewer training episodes
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1. Customisable DDPG architecture

* Task partitioning
» Software on CPU: simulation and weight update
* Customised hardware on FPGA: gradient computation

* Gradient computation via backpropagation

* Forward pass for decisions
* Backward pass for feedbacks and gradients

* Hardware resources shared by both passes

e Parallel elements for odd and even layers
e Alternating between even and odd layers

* Policy set encoded in fixed-point numbers



Odd layer
Inputs streamed in continuously

* Anew input is availablefevery tick Outputs streamed out at regular intervals
* An output becomes readyjevery K ticks
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Even layer

* Anewinputis avaiIabIe|every K ticks |ﬁ Different 10 stream
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Backpropagation

Forward pass for
action signals

Backward pass for

/ feedbacks and gradients
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Jacobian

Computation of initial
feedback signals



2. Platform for sim-to-real learning

* Major components:
e Customised hardware for gradient computation
* 3D printed robotic arm with electromagnet
e Simulated robotic arm and environment

* State space: 23 components
e 12 for joint-box and goal-box distances
* 9 for positions of end effector, box and goal
2 for progress monitoring

* Action space: 5 components
* 4 rotation angles for motors
* 1 control signal for end effector
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Physical robot




State computation




-
O
=
O
-
=
W

PoEcDEPEnEE




3.Evaluation: accelerated policylearning

* Aspects to evaluate
* Execution time for gradient computation in each episode
* Number of episodes before convergence

e Software on CPU
* Intel Core i7-6700 CPU (14nm, 4 cores, 3.4 GHz)
* Single-precision floating point arithmetic using NumPy

* Hardware on FPGA
* Intel Stratix-V FPGA (28nm, 200 MHz)
* 32-bit fixed-point arithmetic (8 integer bits; 24 fractional bits)

* Models
1. FPGA-based DDPG
2. FPGA-based DDPG with expanded action space
3. Deeper model
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Reward function

Distance between
end effector and box

Sum of four components: __—

" (S) = —w I\/(xlinki’; - xbc::'x)2 + (ylinkS - ybox)z + (zlink3 - zbox)2 ‘

2(S) = -w,

Energy saver for
electromagnet

r4(S) = _wél\/(xbox - xgo.al)2 + (ybox - ygoal)z + (Zpox — zgoa!)2

TC 1 (X1ink2 = X1ink3)? + (Viink2 — Viink3)?
PR 3 ) 2)
N (Xtink2 = X1ink3)? + Wink2 = Viink3)? + (Ziink2 — Ziink3)
ra(S 0, if (Syis — Sbox)2 <€ Elevation angle
3 .
—ws *max(a5,0) otherwise of last segment

s \ Distance between

box and goal



Gradient computation

Gradient computation and transmission

M Connection  FPGA exe. time (ms)  Speedup

1 PCle 0.250 2.57 5.12

2 PCle 0.250 3.68 7.36

3 Infiniband 2.311 .33 2.66
Technology
CPU: 14nm

Speed bottleneck: 10 bandwidth FPGA: 28nm

Gradient computation wkhout transmission

M FPGA exe. time (ms)  Spegdup iNorm. Speedup

| 0.0492 13.1 26.2
2 0.0492 18.7 37.3
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Gradient computation

e Execution time estimation for DDPG learning
* Gradient computation + gradient update

* Assumptions in estimation
* No IO bottleneck

e Extra resources for weight optimiser

. Design runs at 200MHz Higher than the speedup for
gradient computation

Theoretical maximum acceleration for p6licy learning

M  Cycles Time (ms) Speedu Norm. speedup

1 5450 0.028 23 47
2 5450 0.028 33 67
3 17000 0.085 35 71
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Policy transfer

* Task specification
* A: (400,0) > (400,150)
B: (400,0) - (200,0)
C: (300,0) - (400,150)
D: (300,0) = (200,150)
E: (200,0) - (400,150) E;gtp:z)sijphpaorftvzair::subtask
* F: (200,0) = (400,0)

e Subtasks

e Attach: electromagnet ches box
°| Put: robotic arm moves box to goal position
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Policy transfer

Number of episodes to achieve goal

TRPO [1] DDPG DDPG F-DDPG F-DDPG

Attach Attach Put Attach Put
A X 600 X 800 X
B Yes 800 800%* 800 1000*
C X 600 1200 600 600
D 1000
E
F

X 800 1200
X 1000
Yes 300 00

* Goal achieved without lifting

F-DDPG gives

better policies

TRPO: Trust Region Policy Optimisation
DDPG/F-DDPG: DDPG model on CPU/FPGA
[1] S. Shao et al. “Towards hardware accelerated reinforcement learning

for applicationspecific robotic control,” ASAP’18
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Fixed-point arithmetic
reduces number of episodes



New direction for robot training!

1. Customisable hardware architecture for DDPG

* Back-propagation via odd layers and even layers
* Policy learned and encoded with fixed-point numbers

2. Policy learning platform
e Customised 3D printed robotic arm
e Simulated robotic arm and environment

3. Evaluation: accelerated policy learning
e Stratix V at 200MHz versus i7-6700 at 3.4GHz
e Faster gradient computation: up to 18.7 times speedup
* Better convergence: fewer training episodes
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A short video...

* https://youtu.be/bKnkJPQcyIM
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https://youtu.be/bKnkJPQcyIM

