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Background: modern robot

• Complicated and 
unpredictable

• Equipped with modern 
sensors: lidars, cameras, etc.

• Hard-code programming: 
tedious and error-prone
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Background: robot learning

• Robot learning
• No hard-code action rules

• Train robots by rewarding 
proper actions

• Training on physical robots
• Slow training process

• Potential physical damage 
during training
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Background: sim-to-real learning

• Sim-to-real robot learning
• Train robot with simulation for improved efficiency

• Simulated robot learns a policy set during training

• Transfer policy set to physical robot after training
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Deep deterministic policy gradients
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• DDPG: a reinforcement learning technique

• Continuous action space supported

• Deep networks used as function approximators

• Efficiency bottleneck: gradient computation



Contributions
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1. Customisable hardware architecture for DDPG
• Back-propagation via odd layers and even layers
• Policy learned and encoded with fixed-point numbers

2. Sim-to-real policy learning platform
• Customised 3D printed robotic arm
• Simulated robotic arm and environment

3. Evaluation: accelerated policy learning
• Stratix V at 200MHz versus i7-6700 at 3.4GHz
• Faster gradient computation: up to 18.7 times speedup
• Better convergence: fewer training episodes



1. Customisable DDPG architecture

• Task partitioning
• Software on CPU: simulation and weight update
• Customised hardware on FPGA: gradient computation

• Gradient computation via backpropagation
• Forward pass for decisions
• Backward pass for feedbacks and gradients

• Hardware resources shared by both passes
• Parallel elements for odd and even layers
• Alternating between even and odd layers

• Policy set encoded in fixed-point numbers
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Odd layer
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• A new input is available every tick
• An output becomes ready every K ticks

Inputs streamed in continuously
Outputs streamed out at regular intervals

Tick 1

Tick 2



• A new input is available every K ticks
• An output becomes ready every tick

Even layer
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Different IO stream 
pattern from odd layers



Backpropagation
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Forward pass for
action signals

Backward pass for 
feedbacks and gradients

Computation of initial 
feedback signals



2. Platform for sim-to-real learning

• Major components:
• Customised hardware for gradient computation
• 3D printed robotic arm with electromagnet
• Simulated robotic arm and environment

• State space: 23 components
• 12 for joint-box and goal-box distances
• 9 for positions of end effector, box and goal
• 2 for progress monitoring

• Action space: 5 components
• 4 rotation angles for motors
• 1 control signal for end effector
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Physical robot
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State computation
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Simulation
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3.Evaluation: accelerated policylearning

• Aspects to evaluate
• Execution time for gradient computation in each episode
• Number of episodes before convergence

• Software on CPU
• Intel Core i7-6700 CPU (14nm, 4 cores, 3.4 GHz)
• Single-precision floating point arithmetic using NumPy

• Hardware on FPGA
• Intel Stratix-V FPGA (28nm, 200 MHz)
• 32-bit fixed-point arithmetic (8 integer bits; 24 fractional bits)

• Models
1. FPGA-based DDPG
2. FPGA-based DDPG with expanded action space
3. Deeper model
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Reward function
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Sum of four components:

Distance between 
end effector and box

Elevation angle
of last segmentEnergy saver for 

electromagnet

Distance between 
box and goal



Gradient computation
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Gradient computation and transmission

Gradient computation without transmission

Technology
CPU: 14nm
FPGA: 28nm

Speed bottleneck: IO bandwidth



Gradient computation
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Theoretical maximum acceleration for policy learning

• Execution time estimation for DDPG learning
• Gradient computation + gradient update

• Assumptions in estimation
• No IO bottleneck

• Extra resources for weight optimiser

• Design runs at 200MHz Higher than the speedup for 
gradient computation



Policy transfer

• Task specification
• A: (400,0) → (400,150)

• B: (400,0) → (200,0) 

• C: (300,0) → (400,150) 

• D: (300,0) → (200,150) 

• E: (200,0) → (400,150) 

• F: (200,0) → (400,0)

• Subtasks
• Attach: electromagnet attaches box

• Put: robotic arm moves box to goal position
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Proposed hardware:
first to support this subtask



Policy transfer

19

Number of episodes to achieve goal

* Goal achieved without lifting
TRPO: Trust Region Policy Optimisation
DDPG/F-DDPG: DDPG model on CPU/FPGA
[1] S. Shao et al. “Towards hardware accelerated reinforcement learning 
for applicationspecific robotic control,” ASAP’18

Fixed-point arithmetic
reduces number of episodes

F-DDPG gives 
better policies



New direction for robot training!

1. Customisable hardware architecture for DDPG
• Back-propagation via odd layers and even layers
• Policy learned and encoded with fixed-point numbers

2. Policy learning platform
• Customised 3D printed robotic arm
• Simulated robotic arm and environment

3. Evaluation: accelerated policy learning
• Stratix V at 200MHz versus i7-6700 at 3.4GHz
• Faster gradient computation: up to 18.7 times speedup
• Better convergence: fewer training episodes
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A short video…

• https://youtu.be/bKnkJPQcyIM
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https://youtu.be/bKnkJPQcyIM

