Custom
Lear

1Sa

alls

nle Control

Policy

o for Roboti

CS

Ce Guo', Wayne Luk", Stanley Loh Qing Shui’
Alexander Warren* and Joshua Levine?

"Imperial College London *Intel

ASAP’19, Cornell Tech, New York, 15 July 2019

Background: modern robot

* Complicated and
unpredictable

* Equipped with modern
sensors: lidars, cameras, etc.

* Hard-code programming:
tedious and error-prone

Background: robot learning

* Robot |learning
* No hard-code action rules

* Train robots by rewarding
proper actions

* Training on physical robots
e Slow training process

e Potential physical damage
during training

Background: sim-to-real learning

e Sim-to-real robot learning
* Train robot with simulation for improved efficiency
e Simulated robot learns a policy set during training
* Transfer policy set to physical robot after training

-

Rewards
and
states

o

Environment

Robotic arm

Policy set

~

Actions

J

‘\&dates
Simulated worl

{

-

~

Environment

Replay 1
buffer States Actions
| Robotic arm
Reinforcement Policy set]
learning /‘
algorithm

S

E—

N

Physical world /

Deep deterministic policy gradients

* DDPG: a reinforcement learning technique

* Continuous action space supported

* Deep networks used as function approximators
* Efficiency bottleneck: gradient computation

Actor-Network Critic-Network

Action

A

Dense Layer Fixed Point pense Layer Fixed Point Dense Layer Fixed Point pense Layer Fixe_d Point
Clipper Clipper Clipper Clipper

Bit-width L Bit-width L Bit-width L Bit-width L
Scale N, Scale N,, Scale N, Scale N,

Contributions

1. Customisable hardware architecture for DDPG
* Back-propagation via odd layers and even layers
* Policy learned and encoded with fixed-point numbers

2. Sim-to-real policy learning platform
e Customised 3D printed robotic arm
e Simulated robotic arm and environment

3. Evaluation: accelerated policy learning
e Stratix V at 200MHz versus i7-6700 at 3.4GHz
e Faster gradient computation: up to 18.7 times speedup
* Better convergence: fewer training episodes

5

1. Customisable DDPG architecture

* Task partitioning
» Software on CPU: simulation and weight update
* Customised hardware on FPGA: gradient computation

* Gradient computation via backpropagation

* Forward pass for decisions
* Backward pass for feedbacks and gradients

* Hardware resources shared by both passes

e Parallel elements for odd and even layers
e Alternating between even and odd layers

* Policy set encoded in fixed-point numbers

Odd layer
Inputs streamed in continuously

* Anew input is availablefevery tick Outputs streamed out at regular intervals
* An output becomes readyjevery K ticks

Weights Input

Partial Dot Products

Tick 1) 4 g b B S B 2

Tick 2)4 mg 7 B S B A

Even layer

* Anewinputis avaiIabIe|every K ticks |ﬁ Different 10 stream

 An output becomes readyfevery tick je—" pattern from odd layers

. Tick 1 . Tick 2
1 Weights Input f Weights Input
1 1

1

1

1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

' Tick 3 : Tick 4
1 Weights Input 1 Weights Input
1 1

1

LI B O [L | D SRR PSR | R | (RRE DN BN RSNl L GRRRRE L ORRSR R

1

1

1

1

Vol by e e

X
X

O B Outpu S

Backpropagation

Forward pass for
action signals

Backward pass for

/ feedbacks and gradients

N

Layer 1 Layer 2 Layer 3
Even Odd Even
PE PE PE
Odd Even Odd
PE PE PE

Jacobian

Computation of initial
feedback signals

2. Platform for sim-to-real learning

* Major components:
e Customised hardware for gradient computation
* 3D printed robotic arm with electromagnet
e Simulated robotic arm and environment

* State space: 23 components
e 12 for joint-box and goal-box distances
* 9 for positions of end effector, box and goal
2 for progress monitoring

* Action space: 5 components
* 4 rotation angles for motors
* 1 control signal for end effector

10

Physical robot

State computation

-
O
=
O
-
=
W

PoEcDEPEnEE

3.Evaluation: accelerated policylearning

* Aspects to evaluate
* Execution time for gradient computation in each episode
* Number of episodes before convergence

e Software on CPU
* Intel Core i7-6700 CPU (14nm, 4 cores, 3.4 GHz)
* Single-precision floating point arithmetic using NumPy

* Hardware on FPGA
* Intel Stratix-V FPGA (28nm, 200 MHz)
* 32-bit fixed-point arithmetic (8 integer bits; 24 fractional bits)

* Models
1. FPGA-based DDPG
2. FPGA-based DDPG with expanded action space
3. Deeper model

14

Reward function

Distance between
end effector and box

Sum of four components: __—

" (S) = —w I\/(xlinki’; - xbc::'x)2 + (ylinkS - ybox)z + (zlink3 - zbox)2 ‘

2(S) = -w,

Energy saver for
electromagnet

r4(S) = _wél\/(xbox - xgo.al)2 + (ybox - ygoal)z + (Zpox — zgoa!)2

TC 1 (X1ink2 = X1ink3)? + (Viink2 — Viink3)?
PR 3) 2)
N (Xtink2 = X1ink3)? + Wink2 = Viink3)? + (Ziink2 — Ziink3)
ra(S 0, if (Syis — Sbox)2 <€ Elevation angle
3 .
—ws *max(a5,0) otherwise of last segment

s \ Distance between

box and goal

Gradient computation

Gradient computation and transmission

M Connection FPGA exe. time (ms) Speedup

1 PCle 0.250 2.57 5.12

2 PCle 0.250 3.68 7.36

3 Infiniband 2.311 .33 2.66
Technology
CPU: 14nm

Speed bottleneck: 10 bandwidth FPGA: 28nm

Gradient computation wkhout transmission

M FPGA exe. time (ms) Spegdup iNorm. Speedup

| 0.0492 13.1 26.2
2 0.0492 18.7 37.3

16

Gradient computation

e Execution time estimation for DDPG learning
* Gradient computation + gradient update

* Assumptions in estimation
* No IO bottleneck

e Extra resources for weight optimiser

. Design runs at 200MHz Higher than the speedup for
gradient computation

Theoretical maximum acceleration for p6licy learning

M Cycles Time (ms) Speedu Norm. speedup

1 5450 0.028 23 47
2 5450 0.028 33 67
3 17000 0.085 35 71

17

Policy transfer

* Task specification
* A: (400,0) > (400,150)
B: (400,0) - (200,0)
C: (300,0) - (400,150)
D: (300,0) = (200,150)
E: (200,0) - (400,150) E;gtp:z)sijphpaorftvzair::subtask
* F: (200,0) = (400,0)

e Subtasks

e Attach: electromagnet ches box
°| Put: robotic arm moves box to goal position

18

Policy transfer

Number of episodes to achieve goal

TRPO [1] DDPG DDPG F-DDPG F-DDPG

Attach Attach Put Attach Put
A X 600 X 800 X
B Yes 800 800%* 800 1000*
C X 600 1200 600 600
D 1000
E
F

X 800 1200
X 1000
Yes 300 00

* Goal achieved without lifting

F-DDPG gives

better policies

TRPO: Trust Region Policy Optimisation
DDPG/F-DDPG: DDPG model on CPU/FPGA
[1] S. Shao et al. “Towards hardware accelerated reinforcement learning

for applicationspecific robotic control,” ASAP’18

19

Fixed-point arithmetic
reduces number of episodes

New direction for robot training!

1. Customisable hardware architecture for DDPG

* Back-propagation via odd layers and even layers
* Policy learned and encoded with fixed-point numbers

2. Policy learning platform
e Customised 3D printed robotic arm
e Simulated robotic arm and environment

3. Evaluation: accelerated policy learning
e Stratix V at 200MHz versus i7-6700 at 3.4GHz
e Faster gradient computation: up to 18.7 times speedup
* Better convergence: fewer training episodes

20

A short video...

* https://youtu.be/bKnkJPQcyIM

21

https://youtu.be/bKnkJPQcyIM

