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• Human action recognition (HAR)

– required by demanding applications,                                                 

e.g. autonomous driving, surveillance… 

• Algorithms for HAR with best accuracy

– 3-dimensional convolutional neural networks (3D CNNs)

• 3D CNN inference on ARM CPU: 0.25 frame per second (fps)

– does not meet real-time requirements

Motivation
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• High Computational Complexity

– standard 3D-CNNs: at least 3x computations of 2D-CNNs

• Large Numbers of Parameters

– 3D convolution: parameters in three different dimensions

• Limited Compression Rate

– By Quantization and 3D Winograd algorithms 

Challenges
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1. An efficient 3D CNN (E3DNet): better than standard 3D CNNs 

(C3D)

– 37 times smaller

– 5% more accurate on UCF101

2. An FPGA-based architecture (F-E3D)

– high performance and enhanced hardware efficiency

3. Comprehensive comparison

– with other 3D CNN models on various platforms

Contributions
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• 3D convolution: 

accumulates results 

from different frames 

to generate output 

feature maps

Background: 3D CNNs
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• C3D is one of the most commonly used 3D CNNs for HAR.

Background: 3D CNNs
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• Quantization

– Linear integer quantization, Binary and Ternary quantization

• Weight Pruning and Approximation

– Low-Rank Factorization and Structural Matrix

• Efficient Building Blocks

– Depth-wise convolution and Bottleneck residual block

Background: Model Compression
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• Without channel accumulation 

• Channel number is equal to filter number

Background: Depth-wise Convolution
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Standard Convolution Depth-wise Convolution



• Fewer parameters 

• Fewer operations

Background:

Bottleneck 

Residual Block
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Input

Point-wise Conv,

Bias, BN, ReLU6

(Expansion Layer)

Depth-wise 3x3 Conv,

Bias, BN, ReLU6

Point-wise Conv,

Bias, BN

(Projection Layer)

Addition

Input

Point-wise Conv,

Bias, BN, ReLU6

(Expansion Layer)

Depth-wise 3x3 Conv,

BN, ReLU6

(a)  depth-wise stride = 1

Output
Output

(b) depth-wise stride = 2

Shortcut

Point-wise Conv,

Bias, BN

(Projection Layer)

* BN: Batch Normalization



• Generalize the BRB to 3D-CNNs

• Expand all 2D convolutions to 

3D convolutions

• Temporal kernel size of 3 added to:

- the first 3D convolution 

- the second 3D convolution 

1. Efficient 3D-CNNs: (a) 3D-1 BRB
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• Similar network structure

to MobileNetV2

• 17 3D-1 BRBs

• Input size: 

16 x 112 x 112 x 3

1. Efficient 3D-CNNs: (b) E3DNet
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• Memory-bound if accelerate each layer separately

• Cache the intermedia results within 3D-1 BRB on chip

2. Design Methodology: (a) Fused 3D BRB
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• Large on-chip memory requirement

• Online Blocking: Controlling the computational flow

2. Design Methodology: (b) Online Blocking
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• Map 1x1x1 and 3x1x1 convolution into the computational 

kernel of 3D depth-wise convolution

2. Design Methodology: (c) Kernel Reuse
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• mainly consists of a computational engine, sliding window, 

ReLU, pooling modules and several buffers.

3. Hardware Design: (a) Architecture
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• Intel Arria 10SX 660 platform:                                                  

using Verilog toolchain

• Human action recognition on UCF101:                                 

13320 videos of 101 human action categories

• Input shape:                                                                                                       

16 X112 X 112 X 3   

4. Experiment: (a) Setting
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4. Experiment: (b) Model Size and Accuracy
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E3DNet ResNeXt-101 P3D C3D

Clip@1 

Accuracy

85.17% 87.7% 84.2% 79.87%

Model Size 8.6MB 365MB 261MB 321MB

Compression 

Rate

Baseline 42.3 30.3 37.3

MAdds 6.1G 9.8G 19.2G 38.2G

Operation 

Reduction

Baseline 1.6 3.1 6.2

• 37 times smaller and 5% more accurate than C3D



• Avalon memory mapped interface (Avalon-MM)

4. Experiment: (c) FPGA Design
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4. Experiment: (c) FPGA Design
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ALMs DSPs M20K

Available 251680 1687 2133

Utilization 113828 1584 1578

Percentage Used 45.2% 93.3% 74%

• Resource consumption of FPGA design



4. Experiment: (d) FPGA Performance Comparison
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CPU GPU FPGA Our Work

Platform Intel Xeon

E5-2680 v2

TITAN X 

Pascal

Xilinx

ZC706

Intel Arria 10

SX660

Frequency 2.8 GHz 1.53 GHz 200 MHz 150 MHz

Model E3DNet E3DNet C3D+SVM E3DNet

Precision 32bit-float 32bit-float block-float 32bit-float

Accuracy 85.17% 85.17% < 81.99% 85.17%

Power (W) 135 240 9.9 36

Latency (ms) 6921.3 41.1 476.8 35.3

• Nearly the same performance with GPU with less energy

• 13 times faster previous FPGA design



4. Experiment: (e) Comparison with Other 3D-CNNs
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• The second place in accuracy and speed with the least 

power consumption

Dot size is 

proportional to 

power 

consumption



• Further Improve E3DNet accuracy

– for human action recognition

• Explore 3D-1 BRB

– for other 3D computer vision tasks such as medical image 

diagnosis

• Optimize performance of 3D-1 BRB

– for other technologies, e.g. CPU, GPU, ASIC

Future Work
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Summary
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Code available at: https://github.com/os-hxfan/E3DNet.git

1. An efficient 3D CNN (E3DNet): better than standard 3D CNNs

– 37 times smaller

– 5% more accurate

2. An FPGA-based architecture (F-E3D)

– high performance and enhanced hardware efficiency

3. Comprehensive comparison

– with other 3D CNN models on various platforms


