Statistical Performance Prediction for Multicore Applications Based on Scalability Characteristics

Oliver Jakob Arndt, Matthias Lüders, and Holger Blume
Outline

- Multicore Performance Prediction
- Scalability Characteristics
- Statistical Prediction Method
- Accuracy Evaluation, Case-Study
Parallel Runtime Behavior

- **Multicores** in all fields
 - Flexible software reduces time-to-market
 - Implementations portable across platforms
Parallel Runtime Behavior

- **Multicores** in all fields
 - Flexible software reduces time-to-market
 - Implementations portable across platforms

- **Parallel programming** requires scalable concurrency
 - Influenced by software demands and hardware capabilities
 - Limited by inappropriate parallelization and bottlenecks
Parallel Runtime Behavior

- **Multicores** in all fields
 - Flexible software reduces time-to-market
 - Implementations portable across platforms

- **Parallel programming** requires scalable concurrency
 - Influenced by software demands and hardware capabilities
 - Limited by inappropriate parallelization and bottlenecks

- **Performance prediction** as supportive tool for developers
Performance Prediction

- **Goal**: Easy, fast, precise prediction

- **System modeling**: Complex in all areas
 - Detailed: modeling effort, simulation
 - Abstract: important effects neglected

![Graph showing performance prediction vs. simulation speed](image)

- **Optimum**
Performance Prediction

- **Goal:** Easy, fast, precise prediction

- **System modeling:** Complex in all areas
 - Detailed: modeling effort, simulation
 - Abstract: important effects neglected

1. **Virtual prototypes:**
 System simulation in software
 - ++ best precision
 - - highest effort
Performance Prediction

- **Goal:** Easy, fast, precise prediction

- **System modeling:** Complex in all areas
 - Detailed: modeling effort, simulation
 - Abstract: important effects neglected

1. **Virtual prototypes:**
 System simulation in software
 - ++ best precision
 - - highest effort

2. **Analytic models:**
 Mechanistic CPU-model, Profiles
 - - moderate accuracy
 - + low modeling effort
Institute of Microelectronic Systems

Performance Prediction

- **Goal:** Easy, fast, precise prediction

- **System modeling:** Complex in all areas
 - Detailed: modeling effort, simulation
 - Abstract: important effects neglected

1. **Virtual prototypes:**
 System simulation in software
 - ++ best precision
 - - highest effort

2. **Analytic models:**
 Mechanistic CPU-model, Profiles
 - - moderate accuracy
 + + low modeling effort

3. **Statistical methods:**
 Machine learning on database
 + + good accuracy
 + + low modeling effort
Prediction with Scalability Characteristics

- **Machine learning approaches**
 - Database design is complex
 - Interfering HW-/SW-features
Prediction with Scalability Characteristics

- **Machine learning approaches**
 - Database design is complex
 - Interfering HW-/SW-features

- **Use of scalability characteristics** (HW-/SW-influences)
 1. Feature extraction from profiles: no modeling effort
 2. Candidate search by distances: no model training
 3. Reconstruction from features: full scalability predicted

- **No user input / architecture-knowledge required**
Scalability Characteristics

- **Scalability**: Capability of spawning work over n cores
 - Denotes bottlenecks and NUMA-/ HT-effects
 - Automatic profiling with MPAL \[1\]

Scalability Characteristics

- **Scalability**: Capability of spawning work over n cores
 - Denotes bottlenecks and NUMA-/ HT-effects
 - Automatic profiling with MPAL \[^{[1]}\]

- **Extracted parameters**:
 - Work imbalance
 - Redundancy
 - Scheduling
 - Lock times

Scalability Characteristics

Scalability: Capability of spawning work over n cores
- Denotes bottlenecks and NUMA-/ HT-effects
- Automatic profiling with MPAL \[1\]

Extracted parameters:
- Work imbalance
- Redundancy
- Scheduling
- Lock times

Characteristics: Represent abstract behavioral perspective (over n)

Descriptive Scalability Features

- **Modeled scalability:**
 \[t(n) = \frac{t(1) \cdot R(n)}{n \cdot (1 - l(n) - w(n) - c(n) - d(n) - s(n) - j(n))} \]

- **Parameters:** Separately modeled
 - Linear base model: two variables
 - Plus linear models for NUMA/HT
 - Curve-fitting returns 6D-vector \(\vec{s}_p \)
Descriptive Scalability Features

- **Modeled scalability:**
 \[t(n) = \frac{t(1) \cdot R(n)}{n \cdot (1 - l(n) - w(n) - c(n) - d(n) - s(n) - j(n))} \]

- **Parameters:** Separately modeled
 - Linear base model: two variables
 - Plus linear models for NUMA/HT
 - Curve-fitting returns 6D-vector \(\vec{s}_p \)

- **Descriptive vector:** Concatenation
 \[\vec{s}_c = \begin{bmatrix} \vec{s}_R^T, \vec{s}_l^T, \vec{s}_w^T, \vec{s}_c^T, \vec{s}_d^T, \vec{s}_s^T, \vec{s}_j^T, \vec{pc}^T \end{bmatrix}^T \] (\(\vec{pc} \) – performance counters)

- Quantitative comparison and reconstruction of scaling behavior
Distances and Candidates

- **Database**: Benchmarks B_i profiled on target platforms T_j
 - New workload A profiled on reference platform(s) P
Distances and Candidates

- **Database**: Benchmarks B_i profiled on target platforms T_j
 - New workload A profiled on reference platform(s) P

- **Geometric distance**: L2-norm between scaling vectors

- **Candidate selection**: From database
 - Minimum algorithm distance on P
 - Minimum platform distance of B
Target Scaling Reconstruction

- Interpolating transformation
 - Weighted factors for each element in target scaling vector
 - Variability in database adds to prediction quality
Target Scaling Reconstruction

- Interpolating transformation
 - Weighted factors for each element in target scaling vector
 - Variability in database adds to prediction quality

- Scaling reconstruction
 - Full scaling trend
 - Scaling parameters
 - Performance counters

- Prediction of performance and migration bottlenecks enabled
Accuracy Evaluation

- **17 benchmarks**
 - Real-world algorithms (ADAS) + standard benchmarks
 - Parallelization: domain decomposition, recursive spawns, etc.

- **15 platforms**
 - 6 server-, 6 desktop-, and 3 embedded-processors
 - Varying ages and instruction-set architectures
Accuracy Evaluation

- **17 benchmarks**
 - Real-world algorithms (ADAS) + standard benchmarks
 - Parallelization: domain decomposition, recursive spawns, etc.

- **15 platforms**
 - 6 server-, 6 desktop-, and 3 embedded-processors
 - Varying ages and instruction-set architectures

- **Prediction errors**
 - Server: **25.5 %**, large core-numbers, NUMA+HT
 - Desktop: **9.9 %**, most similarities between cores
 - Embedded: **29.0 %**, too few reference platforms
 - All platforms: **19.9 %**, prediction across processor families
Case-Study

- **Algorithms**: HOG Pedestrian detection, SGM stereo-vision
- **Target platform**: Xilinx Ultrascale+, 4 x ARM Cortex-A53, 1.2 GHz
Case-Study

- **Algorithms**: HOG Pedestrian detection, SGM stereo-vision
- **Target platform**: Xilinx Ultrascale+, 4 x ARM Cortex-A53, 1.2 GHz

- **Virtual prototyping**: GEM5
 - One month modelling
 - 10 h simulation, 16 % error
Case-Study

- **Algorithms:** HOG Pedestrian detection, SGM stereo-vision
- **Target platform:** Xilinx Ultrascale+, 4 x ARM Cortex-A53, 1.2 GHz

- **Virtual prototyping:** GEM5
 - One month modelling
 - 10 h simulation, 16 % error

- **Analytic model:** Exabounds
 - One week modeling, 6 h profiling
 - Prediction in seconds, 25 % error
Case-Study

- **Algorithms:** HOG Pedestrian detection, SGM stereo-vision
- **Target platform:** Xilinx Ultrascale+, 4 x ARM Cortex-A53, 1.2 GHz

- **Virtual prototyping:** GEM5
 - One month modelling
 - 10 h simulation, 16 % error

- **Analytic model:** Exabounds
 - One week modeling, 6 h profiling
 - Prediction in seconds, 25 % error

- **Statistical prediction:** this work
 - 2 h profiling (given database)
 - Prediction in seconds, 19 % error
Institute of Microelectronic Systems

Conclusion

- **Statistical multicore performance prediction**
 - Scalability characteristics from profiles: *no modeling required*
 - Simple mathematical model: *no architectural knowledge required*
Conclusion

- **Statistical multicore performance prediction**
 - Scalability characteristics from profiles: *no modeling required*
 - Simple mathematical model: *no architectural knowledge required*

- **Accurate prediction even with small database**
 - Prediction accuracy relies on database
 - Average prediction error < 20 %
Conclusion

- **Statistical multicore performance prediction**
 - Scalability characteristics from profiles: *no modeling required*
 - Simple mathematical model: *no architectural knowledge required*

- **Accurate prediction even with small database**
 - Prediction accuracy relies on database
 - Average prediction error < 20%

- **Easy, fast, and precise multicore-performance prediction**