

Statistical Performance Prediction for Multicore Applications Based on Scalability Characteristics

Oliver Jakob Arndt, Matthias Lüders, and Holger Blume

Outline

- Multicore Performance Prediction
- Scalability Characteristics
- Statistical Prediction Method
- Accuracy Evaluation, Case-Study

Parallel Runtime Behavior

- Multicores in all fields
 - Flexible software reduces time-to-market
 - Implementations portable across platforms

Parallel Runtime Behavior

- Multicores in all fields
 - Flexible software reduces time-to-market
 - Implementations portable across platforms

- **Parallel programming** requires scalable concurrency
 - Influenced by software demands and hardware capabilities
 - Limited by inappropriate parallelization and bottlenecks

Parallel Runtime Behavior

- Multicores in all fields
 - Flexible software reduces time-to-market
 - Implementations portable across platforms

- Parallel programming requires scalable concurrency
 - Influenced by software demands and hardware capabilities
 - Limited by inappropriate parallelization and bottlenecks
- Performance prediction as supportive tool for developers

- **Goal:** Easy, fast, precise prediction
- **System modeling:** Complex in all areas
 - Detailed: modeling effort, simulation
 - Abstract: important effects neglected

- **Goal:** Easy, fast, precise prediction
- System modeling: Complex in all areas
 - Detailed: modeling effort, simulation
 - Abstract: important effects neglected
- 1. Virtual prototypes: System simulation in software

- ++ best precision
- highest effort

- **Goal:** Easy, fast, precise prediction
- System modeling: Complex in all areas
 - Detailed: modeling effort, simulation
 - Abstract: important effects neglected
- 1. Virtual prototypes: System simulation in software
- 2. Analytic models: Mechanistic CPU-model, Profiles

- ++ best precision
- highest effort
- moderate accuracy
- low modeling effort

- **Goal:** Easy, fast, precise prediction
- **System modeling:** Complex in all areas
 - Detailed: modeling effort, simulation
 - Abstract: important effects neglected
- Virtual prototypes: System simulation in software
- 2. Analytic models: Mechanistic CPU-model, Profiles
- 3. Statistical methods: Machine learning on database

- ++ best precision
- highest effort
- moderate accuracy
- + low modeling effort
- good accuracy
- Iow modeling effort

Prediction with Scalability Characteristics

Machine learning approaches

- Database design is complex
- Interfering HW-/SW-features

Prediction with Scalability Characteristics

- Machine learning approaches
 - Database design is complex
 - Interfering HW-/SW-features

- Use of scalability characteristics (HW-/SW-influences)
 - 1. Feature extraction from profiles: no modeling effort
 - 2. Candidate search by distances: no model training
 - 3. Reconstruction from features: full scalability predicted

No user input / architecture-knowledge required

Scalability Characteristics

- Scalability: Capability of spawning work over n cores
 - Denotes bottlenecks and NUMA-/ HT-effects
 - Automatic profiling with MPAL ^[1]

[1] O.J. Arndt, T. Lefherz, H. Blume. Abstracting Parallel Programming and its Analysis Towards Framework Independent Development, Intl. Symp. Embedded Multicore/Many-Core System-on-Chip (MCSoC). IEEE, 2015

Scalability Characteristics

- Scalability: Capability of spawning work over n cores
 - Denotes bottlenecks and NUMA-/ HT-effects
 - Automatic profiling with MPAL^[1]

Extracted parameters:

- Work imbalance
- Redundancy
- Scheduling
- Lock times

[1] O.J. Arndt, T. Lefherz, H. Blume. Abstracting Parallel Programming and its Analysis Towards Framework Independent Development, Intl. Symp. Embedded Multicore/Many-Core System-on-Chip (MCSoC). IEEE, 2015

Scalability Characteristics

- Scalability: Capability of spawning work over n cores
 - Denotes bottlenecks and NUMA-/ HT-effects
 - Automatic profiling with MPAL^[1]

Extracted parameters:

- Work imbalance
- Redundancy
- Scheduling
- Lock times

Characteristics: Represent abstract behavioral perspective (over n)

[1] O.J. Arndt, T. Lefherz, H. Blume. Abstracting Parallel Programming and its Analysis Towards Framework Independent Development, Intl. Symp. Embedded Multicore/Many-Core System-on-Chip (MCSoC). IEEE, 2015

Oliver Jakob Arndt, ASAP-19, 17.07.2019

Descriptive Scalability Features

- Modeled scalability: $t(n) = \frac{t(1) \cdot R(n)}{n \cdot (1 l(n) w(n) c(n) d(n) s(n) j(n)))}$
- Parameters: Separately modeled
 - Linear base model: two variables
 - Plus linear models for NUMA/HT
 - Curve-fitting returns 6D-vector \vec{s}_p

Descriptive Scalability Features

- Modeled scalability: $t(n) = \frac{t(1) \cdot R(n)}{n \cdot (1 l(n) w(n) c(n) d(n) s(n) i(n))}$
- **Parameters:** Separately modeled
 - Linear base model: two variables
 - Plus linear models for NUMA/HT
 - Curve-fitting returns 6D-vector \vec{s}_{n}
- **Descriptive vector:** Concatenation

• $\vec{sc} = \begin{bmatrix} \vec{s}_R^T, \vec{s}_l^T, \vec{s}_w^T, \vec{s}_c^T, \vec{s}_d^T, \vec{s}_s^T, \vec{s}_l^T, \vec{pc}^T \end{bmatrix}^T$ (\vec{pc} – performance counters)

Quantitative comparison and reconstruction of scaling behavior

Distances and Candidates

- **Database:** Benchmarks B_i profiled on target platforms T_j
 - New workload A profiled on reference platform(s) P

Distances and Candidates

- **Database:** Benchmarks B_i profiled on target platforms T_j
 - New workload A profiled on reference platform(s) P
- **Geometric distance:** L2-norm between scaling vectors
- Candidate selection: From database
 - Minimum algorithm distance on P
 - Minimum platform distance of B

Target Scaling Reconstruction

Interpolating transformation

- Weighted factors for each element in target scaling vector
- Variability in database adds to prediction quality

Target Scaling Reconstruction

Interpolating transformation

- Weighted factors for each element in target scaling vector
- Variability in database adds to prediction quality

- Scaling reconstruction
 - Full scaling trend
 - Scaling parameters
 - Performance counters

Prediction of performance and migration bottlenecks enabled

Accuracy Evaluation

17 benchmarks

- Real-world algorithms (ADAS) + standard benchmarks
- Parallelization: domain decomposition, recursive spawns, etc.

15 platforms

- 6 server-, 6 desktop-, and 3 embedded-processors
- Varying ages and instruction-set architectures

Accuracy Evaluation

17 benchmarks

- Real-world algorithms (ADAS) + standard benchmarks
- Parallelization: domain decomposition, recursive spawns, etc.

15 platforms

- 6 server-, 6 desktop-, and 3 embedded-processors
- Varying ages and instruction-set architectures

Prediction errors

- Server: **25.5 %**, large core-numbers, NUMA+HT
- Desktop: 9.9 %, most similarities between cores
- Embedded: 29.0 %, too few reference platforms
- All platforms: 19.9 %, prediction across processor families

- **Algorithms:** HOG Pedestrian detection, SGM stereo-vision
- **Target platform:** Xilinx Ultrascale+, 4 x ARM Cortex-A53, 1.2 GHz

- Algorithms: HOG Pedestrian detection, SGM stereo-vision
- **Target platform:** Xilinx Ultrascale+, 4 x ARM Cortex-A53, 1.2 GHz
- Virtual prototyping: GEM5
 - One month modelling
 - 10 h simulation, 16 % error

- Algorithms: HOG Pedestrian detection, SGM stereo-vision
- **Target platform:** Xilinx Ultrascale+, 4 x ARM Cortex-A53, 1.2 GHz
- Virtual prototyping: GEM5
 - One month modelling
 - 10 h simulation, 16 % error
- Analytic model: Exabounds
 - One week modeling, 6 h profiling
 - Prediction in seconds, 25 % error

- Algorithms: HOG Pedestrian detection, SGM stereo-vision
- **Target platform:** Xilinx Ultrascale+, 4 x ARM Cortex-A53, 1.2 GHz
- Virtual prototyping: GEM5
 - One month modelling
 - 10 h simulation, 16 % error
- Analytic model: Exabounds
 - One week modeling, 6 h profiling
 - Prediction in seconds, 25 % error
- Statistical prediction: this work
 - 2 h profiling (given database)
 - Prediction in seconds, 19 % error

Conclusion

Statistical multicore performance prediction

- Scalability characteristics from profiles: no modeling required
- Simple mathematical model: no architectural knowledge required

Conclusion

Statistical multicore performance prediction

- Scalability characteristics from profiles: no modeling required
- Simple mathematical model: no architectural knowledge required

Accurate prediction even with small database

- Prediction accuracy relies on database
- Average prediction error < 20 %

Conclusion

Statistical multicore performance prediction

- Scalability characteristics from profiles: no modeling required
- Simple mathematical model: no architectural knowledge required
- Accurate prediction even with small database
 - Prediction accuracy relies on database
 - Average prediction error < 20 %
- Easy, fast, and precise multicore-performance prediction