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 Multicore Performance Prediction

 Scalability Characteristics

 Statistical Prediction Method

 Accuracy Evaluation, Case-Study
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 Multicores in all fields

 Flexible software reduces time-to-market

 Implementations portable across platforms

Parallel Runtime Behavior
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 Multicores in all fields

 Flexible software reduces time-to-market

 Implementations portable across platforms

 Parallel programming requires scalable concurrency

 Influenced by software demands and hardware capabilities

 Limited by inappropriate parallelization and bottlenecks

 Performance prediction as supportive tool for developers

Parallel Runtime Behavior
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 Goal: Easy, fast, precise prediction

 System modeling: Complex in all areas

 Detailed: modeling effort, simulation

 Abstract: important effects neglected

Performance Prediction
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 Goal: Easy, fast, precise prediction

 System modeling: Complex in all areas

 Detailed: modeling effort, simulation

 Abstract: important effects neglected

1. Virtual prototypes: ++ best precision

System simulation in software - highest effort

Performance Prediction
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 Goal: Easy, fast, precise prediction

 System modeling: Complex in all areas

 Detailed: modeling effort, simulation

 Abstract: important effects neglected

1. Virtual prototypes: ++ best precision

System simulation in software - highest effort

2. Analytic models: - moderate accuracy

Mechanistic CPU-model, Profiles + low modeling effort
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 Goal: Easy, fast, precise prediction

 System modeling: Complex in all areas

 Detailed: modeling effort, simulation

 Abstract: important effects neglected

1. Virtual prototypes: ++ best precision

System simulation in software - highest effort

2. Analytic models: - moderate accuracy

Mechanistic CPU-model, Profiles + low modeling effort

3. Statistical methods: + good accuracy

Machine learning on database + low modeling effort

Performance Prediction
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 Machine learning approaches

 Database design is complex

 Interfering HW-/SW-features

Prediction with Scalability Characteristics
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 Machine learning approaches

 Database design is complex

 Interfering HW-/SW-features

 Use of scalability characteristics (HW-/SW-influences)

1. Feature extraction from profiles: no modeling effort

2. Candidate search by distances: no model training

3. Reconstruction from features: full scalability predicted

 No user input / architecture-knowledge required

Prediction with Scalability Characteristics

ML trained model

training prediction

t(n)

Ԧ𝑐𝐻𝑊 Ԧ𝑐𝑆𝑊

DB

prediction
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 Scalability: Capability of spawning work over cores

 Denotes bottlenecks and NUMA-/ HT-effects

 Automatic profiling with MPAL [1]

[1] O.J. Arndt, T. Lefherz, H. Blume. Abstracting Parallel Programming and its Analysis Towards Framework Independent Development, Intl. Symp. Embedded Multicore/Many-

Core System-on-Chip (MCSoC). IEEE, 2015

Scalability Characteristics
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 Scalability: Capability of spawning work over cores

 Denotes bottlenecks and NUMA-/ HT-effects

 Automatic profiling with MPAL [1]

 Extracted parameters:

 Work imbalance

 Redundancy

 Scheduling

 Lock times

[1] O.J. Arndt, T. Lefherz, H. Blume. Abstracting Parallel Programming and its Analysis Towards Framework Independent Development, Intl. Symp. Embedded Multicore/Many-

Core System-on-Chip (MCSoC). IEEE, 2015

Scalability Characteristics
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 Scalability: Capability of spawning work over cores

 Denotes bottlenecks and NUMA-/ HT-effects

 Automatic profiling with MPAL [1]

 Extracted parameters:

 Work imbalance

 Redundancy

 Scheduling

 Lock times

 Characteristics: Represent abstract behavioral perspective (over    )

[1] O.J. Arndt, T. Lefherz, H. Blume. Abstracting Parallel Programming and its Analysis Towards Framework Independent Development, Intl. Symp. Embedded Multicore/Many-

Core System-on-Chip (MCSoC). IEEE, 2015
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 Modeled scalability:

 Parameters: Separately modeled

 Linear base model: two variables

 Plus linear models for NUMA/HT

 Curve-fitting returns 6D-vector

Descriptive Scalability Features
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 Modeled scalability:

 Parameters: Separately modeled

 Linear base model: two variables

 Plus linear models for NUMA/HT

 Curve-fitting returns 6D-vector

 Descriptive vector: Concatenation

 (      – performance counters)

 Quantitative comparison and reconstruction of scaling behavior

Descriptive Scalability Features
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 Database: Benchmarks     profiled on target platforms    

 New workload profiled on reference platform(s)

Distances and Candidates
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 Database: Benchmarks     profiled on target platforms    

 New workload profiled on reference platform(s)

 Geometric distance: L2-norm between scaling vectors

 Candidate selection: From database

 Minimum algorithm distance on

 Minimum platform distance of

Distances and Candidates
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 Interpolating transformation

 Weighted factors for each element in target scaling vector

 Variability in database adds to prediction quality

Target Scaling Reconstruction
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 Interpolating transformation

 Weighted factors for each element in target scaling vector

 Variability in database adds to prediction quality

 Scaling reconstruction

 Full scaling trend

 Scaling parameters

 Performance counters

 Prediction of performance and migration bottlenecks enabled
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Accuracy Evaluation

 17 benchmarks

 Real-world algorithms (ADAS) + standard benchmarks

 Parallelization: domain decomposition, recursive spawns, etc.

 15 platforms

 6 server-, 6 desktop-, and 3 embedded-processors

 Varying ages and instruction-set architectures
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Accuracy Evaluation

 17 benchmarks

 Real-world algorithms (ADAS) + standard benchmarks

 Parallelization: domain decomposition, recursive spawns, etc.

 15 platforms

 6 server-, 6 desktop-, and 3 embedded-processors

 Varying ages and instruction-set architectures

 Prediction errors

 Server: 25.5 %, large core-numbers, NUMA+HT

 Desktop: 9.9 %, most similarities between cores

 Embedded: 29.0 %, too few reference platforms

 All platforms: 19.9 %, prediction across processor families
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Case-Study

 Algorithms: HOG Pedestrian detection, SGM stereo-vision

 Target platform: Xilinx Ultrascale+, 4 x ARM Cortex-A53, 1.2 GHz
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 10 h simulation, 16 % error
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Case-Study

 Algorithms: HOG Pedestrian detection, SGM stereo-vision

 Target platform: Xilinx Ultrascale+, 4 x ARM Cortex-A53, 1.2 GHz

 Virtual prototyping: GEM5

 One month modelling

 10 h simulation, 16 % error

 Analytic model: Exabounds

 One week modeling, 6 h profiling

 Prediction in seconds, 25 % error

 Statistical prediction: this work

 2 h profiling (given database)

 Prediction in seconds, 19 % error
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 Statistical multicore performance prediction

 Scalability characteristics from profiles: no modeling required

 Simple mathematical model: no architectural knowledge required

Conclusion
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 Prediction accuracy relies on database

 Average prediction error < 20 %

Conclusion



Oliver Jakob Arndt, ASAP-19, 17.07.2019 Slide 29

Institute of Microelectronic Systems

 Statistical multicore performance prediction

 Scalability characteristics from profiles: no modeling required

 Simple mathematical model: no architectural knowledge required

 Accurate prediction even with small database

 Prediction accuracy relies on database

 Average prediction error < 20 %

 Easy, fast, and precise multicore-performance prediction

Conclusion


