A Programmable Architecture for Robot Motion Planning Acceleration

Sean Murray, Will Floyd-Jones, George Konidaris, Daniel J. Sorin ASAP 2019

ELECTRICAL & COMPUTER ENGINEERING

Outline

- Background/Previous Work
- Reconfigurable Collision Detection Accelerator
- Hardware-Accelerated Shortest Path
- Conclusions

The State of Robotics

- Modern robots easily capable of submillimeter precision and repeatability
- Becoming a commodity
- Last 10 years the cost of 3D sensors has come down dramatically

• So...Where are all the robots?

The State of Robotics

- Modern robots easily capable of submillimeter precision and repeatability
- Becoming a commodity
- Last 10 years the cost of 3D sensors has come down dramatically

• So...Where are all the robots?

Current motion planning solutions not good enough to allow massive growth into new domains

Problem Description

Motion Planning is the process of finding a collision-free path from a starting configuration to a goal configuration of the robot

Starting Pose

Goal Pose

Problem Description

Challenges

 Motion planning suffers from familiar state space explosion problem

Motion Planning Is Slow

Problem Statement

• The speed of motion planning is a major hindrance to the expansion of robotics

• Our work tries to answer the following research question:

Can we, through a combination of hardware acceleration and algorithm development, alleviate or remove motion planning latency as a pain point?

The Need for Configurability

- Previous design was limited to around 3000-motion roadmaps (on one of the largest FPGAs available)
- To handle larger roadmaps, would need to move away from FGPA platform.
- Can't justify ASIC cost without flexibility to apply to many robots
- Even for single robot, its configuration space may change frequently

Reconfigurable Collision Detection

Shortest Path Acceleration

Shortest Path is the bottleneck if accelerating collision detection

 Would like to bring its latency in line with collision detection for pipelining purposes

Programmable Bellman-Ford Compute Units

Results

- Used Synopsys Nangate 15 nm Open Cell Library to obtain power/area/timing estimates
- For 128 x 128 node design
 - Can be clocked at 1 GHz.
 - 35 Watts Power consumption
 - ~450mm² area footprint

Latency Components

- Collision detection: 750 cycles
- Path Search: 630 cycles
- Data transfer: 950 cycles
- Total: less than 2.5 microseconds @ 1 GHz.

Conclusions

- Both collision detection and shortest path at the microsecond level of latency
- Design reconfigurable, makes it more suitable for ASIC-hardening
- Opens up new opportunities such as
 - Planning in environments that change rapidly
 - Using motion planning as a primitive in more complex decision making algorithms (task planning)
 - Planning in the presence of multiple agents with uncertainty