
Improving Emulation of Quantum Algorithms using
Space-Efficient Hardware Architectures

Naveed Mahmud, and Esam El-Araby

University of Kansas (KU)

30th IEEE International Conference on
Application-specific Systems, Architectures and Processors

July 15-17, 2019
Cornell Tech, New York

ASAP 2019

2 ASAP 2019 – July 16th, 2019

Outline

Introduction and Motivation
Related Work and Background
Proposed Work
Experimental Results
Conclusions and Future Work

3 ASAP 2019 – July 16th, 2019

Introduction and Motivation

 Why Quantum Computing?
 Efficient quantum algorithms
 Solving NP-hard problems
 Speedup over classical

 Need for Quantum Emulation
 Difficulty of maintenance & control
 High-cost of access

 E.g., academic hourly rate of $1,250 up to
499 annual hours

 Verification and benchmarking
 Analysis of quantum algorithms
 Improving classical computing

paradigms

 Emulation using FPGAs
 Greater speedup vs. SW
 Dynamic (reconfigurable) vs. fixed

architectures
 Exploiting parallelism
 Limitation → Scalability

source: https://learning.acm.org/techtalks/qiskit

source:
https://learning.acm.org/
techtalks/qiskit

4 ASAP 2019 – July 16th, 2019

Introduction and Motivation

 Why Quantum Computing?
 Efficient quantum algorithms
 Solving NP-hard problems
 Speedup over classical

 Need for Quantum Emulation
 Difficulty of maintenance & control
 High-cost of access

 E.g., academic hourly rate of $1,250 up to
499 annual hours

 Verification and benchmarking
 Analysis of quantum algorithms
 Improving classical computing

paradigms

 Emulation using FPGAs
 Greater speedup vs. SW
 Dynamic (reconfigurable) vs. fixed

architectures
 Exploiting parallelism
 Limitation → Scalability

Google’s 72-qubit “Bristlecone” Intel’s 49-qubit “Tangle Lake” IBM-Q 50-qubit computer

D-Wave 2000QIonQ’s 79-qubit computerRigetti’s 16-qubit ASPEN-4

source:
https://learning.acm.org/
techtalks/qiskit

5 ASAP 2019 – July 16th, 2019

Outline

Introduction and Motivation
Related Work and Background
Proposed Work
Experimental Results
Conclusions and Future Work

7 ASAP 2019 – July 16th, 2019

Related Work (Parallel SW Simulators)

 Villalonga, et al., “Establishing the Quantum Supremacy Frontier with a 281 Pflop/s Simulation,” May 2019
 Simulation of 7x7 and 11x11 random quantum circuits (RQCs) of depth 42 and 26 respectively.
 Summit supercomputer (ORNL, USA) with 4550 nodes
 1.6 TB of non-volatile memory per node
 Power consumption of 7.3 MW

 Li et al., “Quantum Supremacy Circuit Simulation on Sunway TaihuLight,” Aug. 2018
 Simulation of 49-qubit random quantum circuits of depth of 55
 Sunway supercomputer (NSC, China) with 131,072 nodes (32,768 CPUs)
 1 PB total main memory

 J. Chen, et al., “Classical Simulation of Intermediate-Size Quantum Circuits,” May 2018
 Simulation of up to 144-qubit random quantum circuits of depth 27
 Supercomputing cluster (Alibaba Group, China) with 131,072 nodes
 8 GB memory per node

 De Raedt et al., “Massively parallel quantum computer simulator eleven years later,” May 2018
 Simulation of Shor’s algorithm using 48-qubits
 Various supercomputing platforms: IBM Blue Gene/Q (decommissioned), JURECA (Germany), K computer (Japan), Sunway TaihuLight (China)
 Up to 16-128 GB memory/node utilized

 T. Jones, et al., “QuEST and High Performance Simulation of Quantum Computers,” May 2018
 Simulation of random quantum circuits up to 38 qubits
 ARCUS supercomputer (ARCHER, UK) with 2048 nodes
 Up to 256 GB memory per node

List of quantum SW simulators

https://quantiki.org/wiki/list-qc-simulators

8 ASAP 2019 – July 16th, 2019

Related Work (FPGA Emulators)

 J. Pilch, and J. Dlugopolski, “An FPGA-based real quantum computer emulator” December 2018
 Results for up to 2-qubit Deutsch’s algorithm
 Details of precision used not presented
 Limited scalability

 A. Silva, and O.G. Zabaleta, “FPGA quantum computing emulator using high level design tools,” August 2017
 Results for up to 6-qubit QFT
 Details of precision used not presented
 No approach to improve scalability

 Y.H. Lee, M. Khalil-Hani, and M.N. Marsono, “An FPGA-based quantum computing emulation framework based
on serial-parallel architecture,” March 2016
 Results of 5-qubit QFT and 7-qubit Grover’s reported
 Up to 24-bit fixed-point precision
 No optimizations to make designs scalable

 A.U. Khalid, Z. Zilic, and K. Radecka, “FPGA emulation of quantum circuits,” October 2004
 3-qubit QFT and Grover’s search implemented
 Fixed-point precision (16 bits)
 Low operating frequency

 M. Fujishima, “FPGA-based high-speed emulator of quantum computing,” December 2003
 Logic quantum processor that abstracts quantum circuit operations into binary logic
 Coefficients of qubit states modeled as binary, not complex
 No resource utilization reported

9 ASAP 2019 – July 16th, 2019

Background (Quantum Computing)

 Qubits
 Physical implementations

 Electron (spin)
 Nucleus (spin through NMR)
 Photon (polarization encoding)
 Josephson junction (superconducting qubits)

 Theoretical representation
 Bloch sphere

» Basis states | ⟩0 , | ⟩1
» Pure states | ⟩𝜓𝜓

 Vector of complex coefficients

 Superposition
 Linear sum of distinct basis states
 Converts to classical logic when measured
 Applies to state with n-qubits

 Entanglement
 Strong correlation between qubits
 Entangled state cannot be factored
 Tensor (Kronecker) product representation

 N = 2n basis states, where, n is number of qubits

| ⟩𝜓𝜓 = 𝛼𝛼| ⟩0 + 𝛽𝛽| ⟩1 ≡
𝛼𝛼
𝛽𝛽 , and

𝑝𝑝 𝜓𝜓 → | ⟩0 = 𝛼𝛼 2 ; 𝑝𝑝 𝜓𝜓 → | ⟩1 = 𝛽𝛽 2

| ⟩𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 = | ⟩𝑞𝑞𝑞 ⊗ | ⟩𝑞𝑞𝑞 ⊗ | ⟩𝑞𝑞𝑞
| ⟩𝜓𝜓 = 𝛼𝛼1𝛼𝛼2𝛼𝛼3| ⟩000 + 𝛼𝛼1𝛼𝛼2𝛽𝛽3|0 ⟩01 + 𝛼𝛼1𝛽𝛽2𝛼𝛼3| ⟩010 +

… + 𝛽𝛽1 𝛽𝛽2𝛽𝛽3|1 ⟩11
NMR ≡ Nuclear Magnetic Resonance

11 ASAP 2019 – July 16th, 2019

Background (Quantum Fourier Transform)

 Quantum Fourier Transform (QFT)
 Fundamental quantum algorithm
 Quantum equivalent of classical Discrete

Fourier Transform (DFT)
 Quadratic speedup over DFT
 Input

 Coefficients of a quantum superimposed
state

 Output
 Coefficients of transformed superimposed

state

𝑈𝑈𝑄𝑄𝑄𝑄𝑄𝑄 ��𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜 =
1
𝑁𝑁
�
𝑘𝑘=0

𝑁𝑁−1

�
𝑞𝑞=0

𝑁𝑁−1

𝑓𝑓 𝑞𝑞𝑞𝑞𝑞𝑞 𝑒𝑒 �2𝜋𝜋𝜋𝜋(𝑞𝑞𝑘𝑘𝑁𝑁 ⟩|𝒌𝒌 = �
𝑘𝑘=0

𝑁𝑁−1

𝑪𝑪𝒌𝒌𝒐𝒐𝒐𝒐𝒐𝒐 ⟩|𝒌𝒌

𝑈𝑈𝑄𝑄𝑄𝑄𝑄𝑄 =
1
𝑁𝑁

1 1 1 … 1
1 𝜔𝜔𝑛𝑛 𝜔𝜔𝑛𝑛2 … 𝜔𝜔𝑛𝑛𝑁𝑁−1

1 𝜔𝜔𝑛𝑛2 𝜔𝜔𝑛𝑛4 … 𝜔𝜔𝑛𝑛
2 𝑁𝑁−1

1 𝜔𝜔𝑛𝑛3 𝜔𝜔𝑛𝑛6 … 𝜔𝜔𝑛𝑛
3 𝑁𝑁−1

⋮ ⋮ ⋮ ⋱ ⋮
1 𝜔𝜔𝑛𝑛𝑁𝑁−1 𝜔𝜔𝑛𝑛

2(𝑁𝑁−1) … 𝜔𝜔𝑛𝑛
(𝑁𝑁−1)(𝑁𝑁−1)

QFT matrix

𝜔𝜔 = 𝑒𝑒
2𝜋𝜋𝜋𝜋
𝑁𝑁 , 𝑁𝑁 = 𝑞𝑛𝑛, and 𝑛𝑛 = number of qubits

��𝜓𝜓𝜋𝜋𝑛𝑛 =
1
𝑁𝑁
�
𝑞𝑞=0

𝑁𝑁−1

𝑓𝑓 𝑞𝑞𝑞𝑞𝑞𝑞 ⟩|𝒒𝒒 = �
𝑞𝑞=0

𝑁𝑁−1

𝑪𝑪𝒒𝒒𝒊𝒊𝒊𝒊 ⟩|𝒒𝒒

QFT

outψinψ UQFT

12 ASAP 2019 – July 16th, 2019

Outline

Introduction and Motivation
Background and Related Work
Proposed Work

Emulation Approaches
Hardware Architectures

Experimental Work
Conclusions and Future Work

13 ASAP 2019 – July 16th, 2019

Emulation Approaches – Direct circuit/gate approach

 QFT Emulation

𝑇𝑇2𝑇𝑇𝑞 𝑇𝑇3 𝑇𝑇4 𝑇𝑇5

5-qubit QFT algorithm/circuit

Hardware node models for 5-qubit QFT

Modeling the quantum circuit as a series of transformations

QFT ≡ Quantum Fourier Transform 𝑇𝑇1 = 𝐻𝐻⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼
𝑇𝑇𝑞 = 𝐶𝐶𝐶𝐶2 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼
𝑇𝑇𝑞 = 𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼 ⊗ 𝐼𝐼 . 𝐶𝐶𝐶𝐶3 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 .
𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼 ⊗ 𝐼𝐼
𝑇𝑇4 = 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼 . 𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼 ⊗ 𝐼𝐼 .

𝐶𝐶𝐶𝐶4 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 . 𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼 ⊗ 𝐼𝐼 .
𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼
𝑇𝑇5 = 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆 . 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼 .

𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼 ⊗ 𝐼𝐼 . 𝐶𝐶𝐶𝐶5 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 .
𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆⊗ 𝐼𝐼 ⊗ 𝐼𝐼 . 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝐼𝐼 ⊗ 𝑆𝑆𝑆𝑆

⋮

⋯
Node1 Node2 Node3

 Advantages
 Modular
 Generalized framework

 Disadvantages
 High resource utilization
 Longer latency
 Poor scalability

14 ASAP 2019 – July 16th, 2019

Emulation Approaches – CMAC approach

 Methodology
 Vector-matrix multiplication

 Complex multiply-and-accumulate (CMAC)
 Input quantum state vector, | ⟩𝝍𝝍𝒊𝒊𝒊𝒊

 Algorithm reduced to a unitary matrix, 𝑼𝑼𝑨𝑨𝑨𝑨𝑨𝑨
 lookup / dynamic generation / stream

 Output quantum state vector, | ⟩𝝍𝝍𝒐𝒐𝒐𝒐𝒐𝒐

 Advantages
 Generalized approach for any quantum algorithm
 Independent of circuit depth
 Lower resource utilization
 Lower latency
 Higher scalability
 Parallelizable hardware architectures

 Disadvantages
 Calculating 𝑼𝑼𝑨𝑨𝑨𝑨𝑨𝑨 could be challenging, but doable

��𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴 . ��𝜓𝜓𝜋𝜋𝑛𝑛

15 ASAP 2019 – July 16th, 2019

Emulation Approaches – CMAC approach optimizations

 Lookup
 Computation elements (𝑼𝑼𝑨𝑨𝑨𝑨𝑨𝑨) stored in memory
 Scalability limited by available memory
 Speed limited by memory bandwidth

 Dynamic generation
 Additional hardware units required for

generating 𝑼𝑼𝑨𝑨𝑨𝑨𝑨𝑨

 Improved memory utilization
 Improved scalability
 Speed limited by complexity of algorithm

generating 𝑼𝑼𝑨𝑨𝑨𝑨𝑨𝑨

 Stream
 No hardware required for 𝑼𝑼𝑨𝑨𝑨𝑨𝑨𝑨

 Improved memory utilization
 Improved scalability
 Speed limited by I/O bandwidth

��𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴 . ��𝜓𝜓𝜋𝜋𝑛𝑛

16 ASAP 2019 – July 16th, 2019

Outline

Introduction and Motivation
Background and Related Work
Proposed Work

Emulation Approaches
Hardware Architectures

Experimental Work
Conclusions and Future Work

17 ASAP 2019 – July 16th, 2019

Hardware Architectures – CMAC approach

 Complex Multiply-and-Accumulate (CMAC) unit
 Implements vector-matrix multiplication on hardware
 Complex valued inputs
 Single/double-precision floating-point

𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖 = �
𝑗𝑗=0

𝑁𝑁−1

𝑹𝑹𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓(𝒊𝒊, 𝒋𝒋)

𝜓𝜓𝑜𝑜𝑜𝑜𝑜𝑜
𝜋𝜋𝑖𝑖𝑟𝑟𝑖𝑖 𝑖𝑖 = �

𝑗𝑗=0

𝑁𝑁−1

𝑹𝑹𝒊𝒊𝒊𝒊𝒓𝒓𝒊𝒊(𝒊𝒊, 𝒋𝒋)

where,
𝑖𝑖 = 0, 1, 𝑞, … , 𝑁𝑁 − 1

𝑹𝑹𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝒊𝒊, 𝒋𝒋 = 𝜓𝜓𝜋𝜋𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑗𝑗 × 𝑼𝑼𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝒊𝒊, 𝒋𝒋 − 𝜓𝜓𝜋𝜋𝑛𝑛
𝜋𝜋𝑖𝑖𝑟𝑟𝑖𝑖 𝑗𝑗 × 𝑼𝑼𝒊𝒊𝒊𝒊𝒓𝒓𝒊𝒊 𝒊𝒊, 𝒋𝒋

𝑹𝑹𝒊𝒊𝒊𝒊𝒓𝒓𝒊𝒊 𝒊𝒊, 𝒋𝒋 = 𝜓𝜓𝜋𝜋𝑛𝑛
𝜋𝜋𝑖𝑖𝑟𝑟𝑖𝑖 𝑗𝑗 × 𝑼𝑼𝒓𝒓𝒓𝒓𝒓𝒓𝒓𝒓 𝒊𝒊, 𝒋𝒋 + 𝜓𝜓𝜋𝜋𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑗𝑗 × 𝑼𝑼𝒊𝒊𝒊𝒊𝒓𝒓𝒊𝒊 𝒊𝒊, 𝒋𝒋

18 ASAP 2019 – July 16th, 2019

Hardware Architectures – CMAC approach

 Single CMAC
 Fully optimized for area
 One CMAC instance
 𝑵𝑵 cycles to store input state vector elements
 𝑵𝑵𝟐𝟐 cycles to compute for all algorithm matrix elements

 N-concurrent CMAC
 Fully optimized for speed
 𝑵𝑵 parallel CMAC instances
 𝑵𝑵 cycles to store input state vector elements
 𝑵𝑵 cycles to compute for all algorithm matrix elements

 Dual-sequential CMAC
 Two CMAC instances connected serially
 Storage overlapped with computations
 Improved execution time

Single CMAC

N-concurrent CMAC

Dual sequential CMAC
N = 2n basis states, and n = number of qubits

19 ASAP 2019 – July 16th, 2019

Hardware Architectures – CMAC approach

CMAC
Architecture

Complexity

Space (𝑶𝑶𝒔𝒔𝒔𝒔𝒓𝒓𝒔𝒔𝒓𝒓) Time (𝑶𝑶𝒐𝒐𝒊𝒊𝒊𝒊𝒓𝒓)

Single 𝑂𝑂(1) 𝑂𝑂(𝑁𝑁2)

N-concurrent 𝑂𝑂(𝑁𝑁) 𝑂𝑂(𝑁𝑁)

Dual sequential 𝑂𝑂(1) 𝑂𝑂(𝑁𝑁2)

Space and Time complexities of proposed architectures

 Complexity analysis of CMAC Architectures
 Single CMAC
𝑶𝑶𝒐𝒐𝒊𝒊𝒊𝒊𝒓𝒓 = 𝑨𝑨𝟏𝟏 + 𝑵𝑵 + 𝑵𝑵𝟐𝟐 × 𝑻𝑻𝒔𝒔𝒓𝒓𝒐𝒐𝒔𝒔𝒌𝒌 = 𝑶𝑶(𝑵𝑵𝟐𝟐)
𝑶𝑶𝒔𝒔𝒔𝒔𝒓𝒓𝒔𝒔𝒓𝒓 = 𝟏𝟏 × 𝑪𝑪𝑪𝑪𝑨𝑨𝑪𝑪 = 𝑶𝑶(𝟏𝟏)

 N-concurrent CMACs
𝑶𝑶𝒐𝒐𝒊𝒊𝒊𝒊𝒓𝒓 = 𝑨𝑨𝟐𝟐 + 𝟐𝟐𝑵𝑵 × 𝑻𝑻𝒔𝒔𝒓𝒓𝒐𝒐𝒔𝒔𝒌𝒌 = 𝑶𝑶(𝑵𝑵)
𝑶𝑶𝒔𝒔𝒔𝒔𝒓𝒓𝒔𝒔𝒓𝒓 = 𝑵𝑵 × 𝑪𝑪𝑪𝑪𝑨𝑨𝑪𝑪𝒔𝒔 = 𝑶𝑶(𝑵𝑵)

 Dual-sequential CMACs
𝑶𝑶𝒐𝒐𝒊𝒊𝒊𝒊𝒓𝒓 = 𝑨𝑨𝟑𝟑 + 𝑵𝑵𝟐𝟐 × 𝑻𝑻𝒔𝒔𝒓𝒓𝒐𝒐𝒔𝒔𝒌𝒌 = 𝑶𝑶(𝑵𝑵𝟐𝟐)
𝑶𝑶𝒔𝒔𝒔𝒔𝒓𝒓𝒔𝒔𝒓𝒓 = 𝟐𝟐 × 𝑪𝑪𝑪𝑪𝑨𝑨𝑪𝑪𝒔𝒔 = 𝑶𝑶(𝟏𝟏)

𝑨𝑨𝟏𝟏,𝑨𝑨𝟐𝟐,𝑨𝑨𝟑𝟑 ≡ initial pipeline latencies
𝑻𝑻𝒔𝒔𝒓𝒓𝒐𝒐𝒔𝒔𝒌𝒌 ≡ system clock period

20 ASAP 2019 – July 16th, 2019

Outline

Introduction and Motivation
Background and Related Work
Proposed Work
Experimental Work
Conclusions and Future Work

21 ASAP 2019 – July 16th, 2019

Experimental Setup

 Testbed Platform
 High-performance reconfigurable

computing (HPRC) system from
DirectStream

 Single compute node to warehouse
scale multi-node deployments

 OS-less, FPGA-only (Arria 10)
architecture
 On-chip memory (OCM)
 On-board memory (OBM)
 Removes interconnection bottlenecks
 Reduces resource contention and energy use

 Highly productive development
environment
 Parallel High-Level Language
 C++-to-HW (previously Carte-C) compiler
 Smooth learning curve + fast development time

DirectStream (DS8) system

23 ASAP 2019 – July 16th, 2019

Experimental Results

 QFT emulation using on-chip memory (OCM) architectures

Number of
qubits

On-chip resource* utilization (%) Emulation time
(sec)**ALMs BRAMs DSPs

2 10.30 8.04 1.05 1.4E-6

3 10.24 8.12 1.05 1.15E-6

4 10.24 8.11 1.05 2.01E-6

5 10.27 8.18 1.05 5.37E-6

6 10.26 8.55 1.05 1.87E-5

7 10.26 10.25 1.05 7.17E-5

8 10.29 16.73 1.05 3.19E-4

9 10.31 41.28 1.05 0.0013

Single CMAC (lookup)

*Total on-chip resources: NALM=427,000, NBRAM=2,713, NDSP=1,518
**Operating frequency: 233 MHz

ALM ≡ Adaptive Logic Modules
BRAM ≡ Block Random Access Memory
DSP ≡ Digital Signal Processing block

24 ASAP 2019 – July 16th, 2019

Experimental Results

Number of
qubits

On-chip resource* utilization (%) Emulation time
(sec)**ALMs BRAMs DSPs

2 10.70 8.04 1.05 6.78E-7

3 10.74 8.12 1.05 7.64E-7

4 11.53 8.11 1.05 9.36E-7

5 17.10 8.18 1.05 1.28E-6

6 24.5 8.55 1.05 1.97E-6

7 39.5 10.25 1.05 3.34E-6

8 74.88 16.73 1.05 6.09E-6

N-concurrent CMAC (lookup)

*Total on-chip resources: NALM=427,000, NBRAM=2,713, NDSP=1,518
**Operating frequency: 233 MHz

 QFT emulation using on-chip memory (OCM) architectures

ALM ≡ Adaptive Logic Modules
BRAM ≡ Block Random Access Memory
DSP ≡ Digital Signal Processing block

25 ASAP 2019 – July 16th, 2019

Experimental Results

Number of
qubits

On-chip resource* utilization (%) Emulation time
(sec)**ALMs BRAMs DSPs

2 12.39 8.55 2.11 7.55E-7

3 12.34 8.55 2.11 9.61E-7

4 12.36 8.63 2.11 1.79E-6

5 12.43 8.70 2.11 5.08E-6

6 12.38 8.99 2.11 1.83E-5

7 12.39 10.69 2.11 7.1E-5

8 12.37 17.18 2.11 0.0003

9 12.37 43.54 2.11 0.0011

Dual sequential CMAC (lookup)

*Total on-chip resources: NALM=427,000, NBRAM=2,713, NDSP=1,518
**Operating frequency: 233 MHz

 QFT emulation using on-chip memory (OCM) architectures

ALM ≡ Adaptive Logic Modules
BRAM ≡ Block Random Access Memory
DSP ≡ Digital Signal Processing block

26 ASAP 2019 – July 16th, 2019

Experimental Results

 Comparison of execution times for on-chip memory (OCM) architectures

27 ASAP 2019 – July 16th, 2019

Experimental Results

 QFT emulation using on-board memory (OBM) architectures

Qubits

On-chip resource*
utilization (%)

OBM** Utilization
(bytes) Emulation time

(sec)***ALMs BRAM DSPs SRAM SDRAM

2 10.71 8.44 1.05 32 128 1.7E-6
3 10.71 8.44 1.05 64 512 2.0E-6
4 10.71 8.44 1.05 128 2K 3.9E-6
5 10.71 8.44 1.05 256 8K 1.1E-5
6 10.71 8.44 1.05 512 32K 3.9E-5
7 10.71 8.44 1.05 1K 128K 0.00015
8 10.71 8.44 1.05 2K 512K 0.00061
9 10.71 8.44 1.05 4K 2M 0.00241

10 10.71 8.44 1.05 8K 8M 0.00963
11 10.71 8.44 1.05 16K 32M 0.03851
12 10.71 8.44 1.05 32K 128M 0.15399
13 10.71 8.44 1.05 64K 512M 0.61586
14 10.71 8.44 1.05 128K 2G 2.36324
15 10.71 8.44 1.05 256K 8G 9.853
16 10.71 8.44 1.05 512K 32G 39.4209

*Total on-chip resources: NALM=427,000, NBRAM=2,713, NDSP=1,518
**Total on-board memory: 4 parallel SRAM banks of 8MB each and 2 parallel SDRAM banks of 32GB each
***Operating frequency: 233 MHz

Qubits

On-chip resource*
utilization (%)

OBM** Utilization
(bytes) Emulation time

(sec)***ALMs BRAM DSPs SRAM SDRAM

2 12 8.63 2.11 32 128 7.55E-7
3 12 8.63 2.11 64 512 9.61E-7
4 12 8.63 2.11 128 2K 1.79E-6
5 12 8.63 2.11 256 8K 5.08E-6
6 12 8.63 2.11 512 32K 1.83E-5
7 12 8.63 2.11 1K 128K 7.10E-5
8 12 8.63 2.11 2K 512K 0.00028
9 12 8.63 2.11 4K 2M 0.00113
10 12 8.63 2.11 8K 8M 0.00451
11 12 8.63 2.11 16K 32M 0.018002
12 12 8.63 2.11 32K 128M 0.072006
13 12 8.63 2.11 64K 512M 0.2888021
14 12 8.63 2.11 128K 2G 1.152083
15 12 8.63 2.11 256K 8G 4.608329
16 12 8.63 2.11 512K 32G 18.4331

Single CMAC (lookup) Dual-sequential CMAC (lookup)

ALM ≡ Adaptive Logic Modules
BRAM ≡ Block Random Access Memory
DSP ≡ Digital Signal Processing block

28 ASAP 2019 – July 16th, 2019

Experimental Results

 Comparison of execution times for on-board memory (OBM) architectures

30 ASAP 2019 – July 16th, 2019

Experimental Results

 QFT emulation using on-board memory (OBM) architectures

*Total on-chip resources: NALM=427,000, NBRAM=2,713, NDSP=1,518
**Total on-board memory: 4 parallel SRAM banks of 8MB each and 2 parallel SDRAM banks of 32GB each
***Operating frequency: 233 MHz
† Results projected using regression

Qubits

On-chip resource*
utilization (%)

OBM** Utilization
(bytes) Emulation time

(sec)***
ALMs BRAMs DSPs SDRAM

2 11 8 1 32 2.3E-6
4 11 8 1 128 3.4E-6
6 11 8 1 512 2.0E-5
8 11 8 1 2K 2.8E-4
10 11 8 1 8K 4.5E-3
12 11 8 1 32K 7.2E-2
14 11 8 1 128K 1.15E0
16 11 8 1 512K 1.84E+1
18 11 8 1 2M 2.95E+2
20 11 8 1 8M 4.72E+3
22 11 8 1 32M 7.5E+4†
24 11 8 1 128M 1.2E+6†
26 11 8 1 512M 1.93E+7†
28 11 8 1 2G 3.09E+8†
30 11 8 1 8G 4.95E+9†
32 11 8 1 32G 7.92E+10†

Dual-sequential CMAC (stream)Dual-sequential CMAC (dynamic generation)

ALM ≡ Adaptive Logic Modules
BRAM ≡ Block Random Access Memory
DSP ≡ Digital Signal Processing block

Qubits

On-chip resource*
utilization (%)

OBM** Utilization
(bytes) Emulation time

(sec)***
ALMs BRAMs DSPs SDRAM

2 13.16 9.58 3.23 32 1.99E-6
4 13.16 9.58 3.23 128 3.02E-6
6 13.16 9.58 3.23 512 1.95E-5
8 13.16 9.58 3.23 2K 0.0003
10 13.16 9.58 3.23 8K 0.0045
12 13.16 9.58 3.23 32K 0.0720
14 13.16 9.58 3.23 128K 1.1521
16 13.16 9.58 3.23 512K 18.433
18 13.16 9.58 3.23 2M 294.93
20 13.16 9.58 3.23 8M 4718.934
22 13.16 9.58 3.23 32M 18876†
24 13.16 9.58 3.23 128M 302012†
26 13.16 9.58 3.23 512M 4832188†
28 13.16 9.58 3.23 2G 7.73E+7 †
30 13.16 9.58 3.23 8G 1.23E+9 †
32 13.16 9.58 3.23 32G 1.979E+10 †

31 ASAP 2019 – July 16th, 2019

Experimental Results

Number of
pixels Qubits

On-chip resource*
utilization (%)

OBM** Utilization
(bytes) Emulation time

(sec)***
ALMs BRAMs DSPs SDRAM

16x16 8 14 9 2 4K 6.73E-6
32x32 10 14 9 2 16K 1.66E-5
64x64 12 14 9 2 64K 5.62E-5

128x128 14 14 9 2 256K 0.0002
256x256 16 14 9 2 1M 0.0008
512x512 18 14 9 2 4M 0.0034

1024x1024 20 14 9 2 16M 0.0135
2048x2048 22 14 9 2 64M 0.0540

4Kx4K 24 14 9 2 256M 0.2160
8Kx8K 26 14 9 2 1G 0.8641

16Kx16K 28 14 9 2 4G 3.4563
32Kx32K 30 14 9 2 16G 13.825

Qubits
On-chip resource*

utilization (%)
OBM** Utilization

(bytes) Emulation time
(sec)***

ALMs BRAMs DSPs SDRAM
2 11 8 1 32 2.3E-6
4 11 8 1 128 3.4E-6
6 11 8 1 512 2.0E-5
8 11 8 1 2K 2.8E-4
10 11 8 1 8K 4.5E-3
12 11 8 1 32K 7.2E-2
14 11 8 1 128K 1.15E0
16 11 8 1 512K 1.84E+1
18 11 8 1 2M 2.95E+2
20 11 8 1 8M 4.72E+3
22 11 8 1 32M 7.5E+4†
24 11 8 1 128M 1.2E+6†
26 11 8 1 512M 1.93E+7†
28 11 8 1 2G 3.09E+8†
30 11 8 1 8G 4.95E+9†
32 11 8 1 32G 7.92E+10†

Grover’s search using OBM architectures
Single CMAC (stream)

Quantum Haar transform (QHT) using OBM architectures
Kernel approach

*Total on-chip resources: NALM=427,000, NBRAM=2,713, NDSP=1,518
**Total on-board memory: 4 parallel SRAM banks of 8MB each and 2 parallel SDRAM banks of 32GB each
***Operating frequency: 233 MHz
† Results projected using regression

ALM ≡ Adaptive Logic Modules
BRAM ≡ Block Random Access Memory
DSP ≡ Digital Signal Processing block

32 ASAP 2019 – July 16th, 2019

Experimental Results

 Comparison with related work (FPGA emulation)
Reported Work Algorithm Number of qubits Precision Operating

frequency (MHz)
Emulation time
(sec)

Fujishima (2003) Shor’s factoring - - 80 10

Khalid et al (2004)
QFT 3 16-bit fixed pt.

82.1
61E-9

Grover’s search 3 16-bit fixed pt. 84E-9

Aminian et al (2008) QFT 3 16-bit fixed pt. 131.3 46E-9

Lee et al (2016)
QFT 5 24-bit fixed pt. 90 219E-9

Grover’s search 7 24-bit fixed pt. 85 96.8E-9

Silva and Zabaleta
(2017) QFT 4 32-bit floating pt. - 4E-6

Pilch and Dlugopolski
(2018) Deutsch 2 - - -

Proposed work

QFT 20

32-bit floating pt. 233

18.4

QHT 30 13.8

Grover’s search 20 18.4

33 ASAP 2019 – July 16th, 2019

Conclusions

 Supremacy of Quantum Computing
 Need for Quantum Emulation
 Emulation using FPGAs

 Proposed Approaches and Methods
 Direct circuit/gate approach
 CMAC approach + lookup / dynamic generation / stream
 Kernel approach

 Case studies
 Quantum Fourier Transform (QFT)
 Multi-dimensional Quantum Haar Transform (QHT)
 Single-pattern / multi-pattern Grover’s search algorithm

 Testbed Platform
 State-of-the-art HPRC system from DirectStream
 C++ to hardware compiler

34 ASAP 2019 – July 16th, 2019

Future Work

 More algorithms
 Integer factoring using Shor’s algorithm
 Dimension reduction using QHT
 Image pattern recognition using QHT and Grover’s search

 Design Optimizations
 Combining / sharing resources, e.g., multipliers

 Accuracy trade-off study
 Fixed-point vs. floating-point implementations for higher scalability

 Quantum error correction (QEC)

 Power efficiency

ASAP 2019 – July 16th, 2019

	Slide Number 1
	Outline
	Introduction and Motivation
	Introduction and Motivation
	Outline
	Related Work (Parallel SW Simulators)
	Related Work (FPGA Emulators)
	Background (Quantum Computing)
	Background (Quantum Fourier Transform)
	Outline
	Emulation Approaches – Direct circuit/gate approach
	Emulation Approaches – CMAC approach
	Emulation Approaches – CMAC approach optimizations
	Outline
	Hardware Architectures – CMAC approach
	Hardware Architectures – CMAC approach
	Hardware Architectures – CMAC approach
	Outline
	Experimental Setup
	Experimental Results
	Experimental Results
	Experimental Results
	Experimental Results
	Experimental Results
	Experimental Results
	Experimental Results
	Experimental Results
	Experimental Results
	Conclusions
	Future Work
	Slide Number 35

