

The 30th IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP 2019)

Leveraging Energy Cycle Regularity to Predict Adaptive Mode for Non-volatile Processors

Zejun Shi¹, Dongqin Zhou², Keni Qiu², Jiwu Shu¹

¹Tsinghua University, Beijing, China ²Capital Normal University, Beijing, China

July 15-17, 2019 Cornell Tech, New York **1. Introduction**

- **1.1 NVPs without retention scheme**
- 1.2 NVPs with hardware support retention mode
- **1.3 NVPs with software support retention mode**
- **1.4 Energy prediction algorithms**

1.5 Problem and idea

- 2. Methodology
 - 2.1 Phase 1: Select an adaptive mode
 - 2.2 Phase 2: Reexamine the decision of backup mode
 - 2.3 Correctness guarantee
- **3. Evaluation**
 - **3.1 Experimental setup**
 - **3.2 Experimental results**
- 4. Conclusion

Introduction - NVPs without retention scheme

NVPs can accomplish data consistency during power failures

- System conducts backup when power is below preset threshold.
- After power resumes, the system recharges capacitor thoroughly first.
- NVPs then copy data from NVM back to volatile memory.

Introduction - NVPs with hardware support retention

During retention state, NVPs enter a sleep mode

Data and registers are kept static and program execution stops.

A specific predictor determines whether perform retention or backup

- If backup is adopted, system stores volatile data and enters OFF mode.
- Otherwise, it goes to RETENTION mode.

Introduction - NVPs with software support retention

"Dual-threshold" contains retention and backup threshold

- System enters retention and backup mode in order.
- If power resumes during retention, system restores directly.

Introduction – Related energy prediction algorithms

Previous energy predictions mostly focus on solar harvested-energy

- They implement prediction through the similarity among daily records.
- Improved mechanisms are proposed based on power measurements.

• The kinds of energy adaptive predictions are relatively onefold.

Introduction - Problem and idea

Problem:

- Hardware support retention leads to energy expenditure and slow process.
- Software support retention always enters retention mode on power failures.
- Related energy predictions focus on solar energy harvesting merely.

Jdea:

- Leverage the regularity of energy waveforms to relieve energy waste.
- Determine an appropriate mode based on historical records.

Outline

1. Introduction

- **1.1 NVPs without retention scheme**
- 1.2 NVPs with hardware support retention mode
- **1.3 NVPs with software support retention mode**
- **1.4 Energy prediction algorithms**
- **1.5 Problem and idea**

2. Methodology

- **2.1 Phase 1: Select an adaptive mode**
- 2.2 Phase 2: Reexamine the decision of backup mode
- 2.3 Correctness guarantee
- **3. Evaluation**
 - **3.1 Experimental setup**
 - **3.2 Experimental results**
- 4. Conclusion

Design overview

Adaptive mode prediction

Phase 1: Select an adaptive mode

Phase 2: Reexamine the decision of backup mode

Correctness guarantee

outline	sampled energy	design overview	phase 1	phase 2	correctness guarantee	visual instance	>
---------	----------------	-----------------	---------	---------	-----------------------	-----------------	---

Changing ambient energy exhibits some kind of regularity

- Waveforms exhibit some kind of regularity.
- Regularity : the length of one energy cycle is very close to its near cycles.

Methodology

Phase 1: Select an adaptive mode

- Step 1: check the feature similarity of the current energy cycle with the most recent one.
 - \geq |EC Len (current)-EC Len (the most recent)| $\leq \varepsilon$

outline sampled energy design overview phase 1 phase 2 correctness guarantee visual instance

Phase 1: Select an adaptive mode

Step 2: search further from a certain amount of historical records.

outline sampled energy design overview phase 1 phase 2 correctness guarantee visual instance

Phase 1: Select an adaptive mode

Step 2: search further from a certain amount of historical records.

outline sampled energy design overview phase 1 phase 2 correctness visual instance visual instance

Phase 2: Reexamine the decision of backup mode

(System could probably resume during retention if **backup** is selected in **Phase 1** with **high R-HM Ratio**.)

outline sampled energy design overview phase 1 phase 2 correctness guarantee visual instance

Phase 2: Reexamine the decision of backup mode

(System could probably resume during retention if **backup** is selected in **Phase 1** with **high R-HM Ratio**.)

outline sampled energy design overview phase 1 phase 2 correctness guarantee visual instance

Correctness guarantee

Select backup mistakenly (retention should be the better choice)

• The system miss an opportunity to quickly recover.

Select retention mistakenly (power does not yet resume)

• The reserved energy is enough for storing the whole volatile data.

$$T_{retention} = \frac{E_{retention}}{P_{retention}} = \frac{E_{capacity} - E_{backup}}{P_{retention}}$$

outline sampled energy design overview phase 1 phase 2 correctness visual instance visual instance

Prediction based on periodic mode logs based on TV-RF

Outline

1. Introduction

- **1.1 NVPs without retention scheme**
- 1.2 NVPs with hardware support retention mode
- **1.3 NVPs with software support retention mode**
- **1.4 Energy prediction algorithms**
- **1.5 Problem and idea**
- 2. Methodology
 - **2.1 Phase 1: Select an adaptive mode**
 - 2.2 Phase 2: Reexamine the decision of backup mode
 - 2.3 Correctness guarantee

3. Evaluation

- **3.1 Experimental setup**
- **3.2 Experimental results**
- 4. Conclusion

Experimental setup

Parameter	Description		
Processor	THU1010N		
System frequency	217KHz		
	On-chip memory : SRAM		
Memory	On-chip NVM : FeRAM		
	Register : Nonvolatile flip-flops		

Energy	TV-RF	WiFi (home)	WiFi (office)	Piezo
Data Volume	1,800	421,820	65,000	500,000
ε (ms)	43.44	79.60	92.91	0.04
θ (%)	56.6	60.2	53.4	60.3

Measurements

- Execution forward progress
- Energy utilization efficacy

Evaluation

Execution forward progress

- Adaptive prediction scheme obtains more than 1.2X to 1.3X compared to the pure dualthreshold method.
- When energy supplies are *WiFi (home)* and *WiFi (office)*, the forwardness of various benchmarks is very close.
- Benchmark *adpcm* performs better than other benchmarks in different energy supply scenarios.

Evaluation

Energy utilization efficacy

•
$$\eta_{eue} = \frac{E_{exe}}{E_{backup} + E_{exe} + E_{retention} + E_{resum}}$$

- Based on *TV-RF*, the proposed implementation obtains improvement from 19.6% to 41.9%.
- Energy utilization efficiency of various benchmarks performs better under *Piezo* than *WiFi (home)*, which is inconsistent with their improvement on forward progress respectively.

Outline

1. Introduction

- **1.1 NVPs without retention scheme**
- 1.2 NVPs with hardware support retention mode
- **1.3 NVPs with software support retention mode**
- **1.4 Energy prediction algorithms**
- **1.5 Problem and idea**
- 2. Methodology
 - **2.1 Phase 1: Select an adaptive mode**
 - 2.2 Phase 2: Reexamine the decision of backup mode
 - 2.3 Correctness guarantee
- **3. Evaluation**
 - **3.1 Experimental setup**
 - **3.2 Experimental results**
- 4. Conclusion

Conclusion

